Math 214, Homework 8.

7-13. Let $n \geq 1$ and $U(n):=\left\{A: A^{*} A=I\right\} \subseteq \operatorname{GL}(n, \mathbb{C}) . U(n)$ is a group because $I \in U(n)$ and for $A, B \in U(n),(A B)^{*}(A B)=B^{*} A^{*} A B=B^{*} B=I$.
We show $U(n)$ is a properly embedded submanifold of $\mathrm{GL}(n, \mathbb{C})$ with the constant rank theorem and the equivariant rank theorem on $F: \mathrm{GL}(n, \mathbb{C}) \rightarrow \mathrm{M}(n, \mathbb{C}), F(A)=A^{*} A$.

If $\mathrm{GL}(n, \mathbb{C})$ acts on itself by right multiplication and on $\mathrm{M}(n, \mathbb{C})$ by conjugation:
For $A, B \in \mathrm{GL}(n, \mathbb{C}), F(A B)=(A B)^{*}(A B)=B^{*}\left(A^{*} A\right) B=B^{*} F(A) B$.
The right action on $\operatorname{GL}(n, \mathbb{C})$ is transitive so F is equivariant and constant rank.
Then $U(n)=F^{-1}(I)$ is a properly embedded submanifold of GL (n, \mathbb{C}).
Thus $U(n)$ is a Lie subgroup of $\operatorname{GL}(n, \mathbb{C})$.
To find its dimension, we compute the rank of F at I. For $t \in(-\varepsilon, \varepsilon)$ for some $\varepsilon>0$, $B \in \mathrm{M}(n, \mathbb{C}), F(I+t B)=(I+t B)^{*}(I+t B)=I+t\left(B^{*}+B\right)+\mathcal{O}\left(t^{2}\right)$,
so the range of $d F_{I}$ is the space of self-adjoint matrices in $\mathrm{M}(n, \mathbb{C})$.
Over \mathbb{R}, a basis is given by the matrices $E_{j k}+E_{k j}, i E_{j k}-i E_{k j}$ for $j<k$, and $E_{j j}$ (where $E_{j k}$ is the matrix with zeroes and a 1 in position j, k).
There are $2 \times \frac{1}{2}(n-1) n+n=n^{2}$ basis elements. Since $\{I\}$ is zero dimensional, the codimension of $U(n)$ in $\operatorname{GL}(n, \mathbb{C})$ is n^{2} and the dimension of $U(n)$ is $2 n^{2}-n^{2}=n^{2}$.

8-19. \mathbb{R}^{3} is a real vector space. We check that $[\cdot, \cdot]: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined $[x, y]=x \times y$ is in fact a Lie bracket. We check the Jacobi identity: For $x, y, z \in \mathbb{R}^{3}$:

$$
\begin{aligned}
(x \times y) \times & z+(y \times z) \times x+(z \times x) \times y \\
= & \left(x^{2} y^{3}-x^{3} y^{2}, x^{3} y^{1}-x^{1} y^{3}, x^{1} y^{2}-x^{2} y^{1}\right) \times z \\
& +\left(y^{2} z^{3}-y^{3} z^{2}, y^{3} z^{1}-y^{1} z^{3}, y^{1} z^{2}-y^{2} z^{1}\right) \times x \\
& +\left(z^{2} x^{3}-z^{3} x^{2}, z^{3} x^{1}-z^{1} x^{3}, z^{1} x^{2}-z^{2} x^{1}\right) \times y \\
= & \left(x^{3} y^{1} z^{3}-x^{1} y^{3} z^{3}-x^{1} y^{2} z^{2}+x^{2} y^{1} z^{2}, x^{1} y^{2} z^{1}-x^{2} y^{1} z^{1}-x^{2} y^{3} z^{3}+x^{3} y^{2} z^{3},\right. \\
& \left.x^{2} y^{3} z^{2}-x^{3} y^{2} z^{2}-x^{3} y^{1} z^{1}+x^{1} y^{3} z^{1}\right) \\
& +\left(y^{3} z^{1} x^{3}-y^{1} z^{3} x^{3}-y^{1} z^{2} x^{2}+y^{2} z^{1} x^{2}, y^{1} z^{2} x^{1}-y^{2} z^{1} x^{1}-y^{2} z^{3} x^{3}+y^{3} z^{2} x^{3},\right. \\
& \left.y^{2} z^{3} x^{2}-y^{3} z^{2} x^{2}-y^{3} z^{1} x^{1}+y^{1} z^{3} x^{1}\right) \\
& +\left(z^{3} x^{1} y^{3}-z^{1} x^{3} y^{3}-z^{1} x^{2} y^{2}+z^{2} x^{1} y^{2}, z^{1} x^{2} y^{1}-z^{2} x^{1} y^{1}-z^{2} x^{3} y^{3}+z^{3} x^{2} y^{3},\right. \\
= & (0,0,0)
\end{aligned}
$$

Recall we may write the cross product as the formal determinant:

$$
\left(x^{1}, x^{2}, x^{3}\right) \times\left(y^{1}, y^{2}, y^{3}\right)=\operatorname{det}\left[\begin{array}{ccc}
i & j & k \\
x^{1} & x^{2} & x^{3} \\
y^{1} & y^{2} & y^{3}
\end{array}\right] .
$$

So by the properties of det, \times is bilinear and antisymmetric.
Then \times is indeed a Lie bracket and \mathbb{R}^{3} with \times is a Lie algebra.

8-22. For A an algebra over \mathbb{R}, the set of derivations $D: A \rightarrow A$, linear maps satisfying $D(x y)=D(x) y+x D(y)$, is equipped with the bracket $\left[D_{1}, D_{2}\right]=D_{1} \circ D_{2}-D_{2} \circ D_{1}$. This set is a real vector space because $\left(\alpha D_{1}+D_{2}\right)(x y)=\alpha D_{1}(x y)+D_{2}(x y)=$ $=\alpha D_{1}(x) y+\alpha x D_{1}(y)+D_{2}(x) y+x D_{2}(y)=\left(\alpha D_{1}+D_{2}\right)(x) y+x\left(\alpha D_{1}+D_{2}\right)(y)$. It's closed under the bracket because:

$$
\begin{aligned}
{\left[D_{1}, D_{2}\right](x y)=} & D_{1}\left(D_{2}(x y)\right)-D_{2}\left(D_{1}(x y)\right) \\
= & D_{1}\left(D_{2}(x) y+x D_{2}(y)\right)-D_{2}\left(D_{1}(x) y+x D_{1}(y)\right) \\
= & D_{1}\left(D_{2}(x)\right) y+D_{2}(x) D_{1}(y)+D_{1}(x) D_{2}(y)+x D_{1}\left(D_{2}(y)\right) \\
& -D_{2}\left(D_{1}(x)\right) y-D_{1}(x) D_{2}(y)-D_{2}(x) D_{1}(y)-x D_{2}\left(D_{1}(y)\right) \\
= & {\left[D_{1}, D_{2}\right](x) y+x\left[D_{1}, D_{2}\right](y) }
\end{aligned}
$$

So $\left[D_{1}, D_{2}\right]$ is also a derivation.
The bracket is bilinear because derivations are linear, and antisymmetric since
$D_{1} \circ D_{2}-D_{2} \circ D_{1}=-\left(D_{2} \circ D_{1}-D_{1} \circ D_{2}\right)$.
Finally, the Jacobi identity holds because:

$$
\begin{aligned}
& {\left[\left[D_{1}, D_{2}\right], D_{3}\right]+\left[\left[D_{2}, D_{3}\right], D_{1}\right]+\left[\left[D_{3}, D_{1}\right], D_{2}\right] } \\
= & D_{1} \circ D_{2} \circ D_{3}-D_{2} \circ D_{1} \circ D_{3}-D_{3} \circ D_{1} \circ D_{2}+D_{3} \circ D_{2} \circ D_{1} \\
& +D_{2} \circ D_{3} \circ D_{1}-D_{3} \circ D_{2} \circ D_{1}-D_{1} \circ D_{2} \circ D_{3}+D_{1} \circ D_{3} \circ D_{2} \\
& +D_{3} \circ D_{1} \circ D_{2}-D_{1} \circ D_{3} \circ D_{2}-D_{2} \circ D_{3} \circ D_{1}+D_{2} \circ D_{1} \circ D_{3} \\
= & 0
\end{aligned}
$$

So the bracket makes the space of derivations into a Lie algebra.

8-28. Considering the Lie group homomorphism det : $\operatorname{GL}(n, \mathbb{R}) \rightarrow \mathbb{R}^{*}$, the induced Lie algebra homomorphism is $\operatorname{det}_{*}: \mathfrak{g l}(n, \mathbb{R}) \rightarrow \mathbb{R}$ given by $\operatorname{det}_{*} B=\left.\left(\operatorname{det}_{*} B^{L}\right)\right|_{1}$ where B^{L} is the left invariant vector field with $\left.B^{L}\right|_{I}=B$.
Since by Problem 7-4, $\left.\left(\operatorname{det}_{*} B^{L}\right)\right|_{1}=\left.d(\operatorname{det})_{I} B^{L}\right|_{I}=d(\operatorname{det})_{I} B=\operatorname{tr}(B)$, we find that $\operatorname{det}_{*}=\operatorname{tr}$. (Note this is a Lie algebra homomorphism since $\operatorname{tr}[A, B]=\operatorname{tr}(A B)-\operatorname{tr}(B A)=0=\operatorname{tr}(A) \operatorname{tr}(B)-\operatorname{tr}(B) \operatorname{tr}(A)=[\operatorname{tr}(A), \operatorname{tr}(B)])$.

8-31. Let \mathfrak{g} be a Lie algebra and \mathfrak{h} a subspace.
(a) Suppose \mathfrak{h} is an ideal in \mathfrak{g}.

Then if the quotient space $\mathfrak{g} / \mathfrak{h}=\{x+\mathfrak{h}: x \in \mathfrak{g}\}$ has a Lie algebra structure for which the quotient map $\pi: \mathfrak{g} \rightarrow \mathfrak{g} / \mathfrak{h}: x \mapsto x+\mathfrak{h}$ is a Lie algebra homomorphism, then the Lie bracket must be given by $[x+\mathfrak{h}, y+\mathfrak{h}]=[\pi(x), \pi(y)]=\pi([x, y])=[x, y]+\mathfrak{h}$.

Indeed, such a Lie bracket is well defined, because if $w+\mathfrak{h}=x+\mathfrak{h}$ and $y+\mathfrak{h}=z+\mathfrak{h}$ then $x-w, z-y \in \mathfrak{h}$ and since \mathfrak{h} is an ideal, $[x-w, y],[z-y, x] \in \mathfrak{h}$. Then we find $[w+\mathfrak{h}, y+\mathfrak{h}]=[w, y]+\mathfrak{h}=[w, y]+([x-w, y]-[z-y, x]+\mathfrak{h})=$ $=[x, y]+[x, z-y]+\mathfrak{h}=[x, z]+\mathfrak{h}=[x+\mathfrak{h}, z+\mathfrak{h}]$
which proves well-definedness.
And this operation is actually a proper Lie bracket, because it is bilinear as the original bracket is multilinear. It is antisymmetric as
$[x+\mathfrak{h}, y+\mathfrak{h}]=[x, y]+\mathfrak{h}=-[y, x]+\mathfrak{h}=-([y, x]+\mathfrak{h})=-[y+\mathfrak{h}, x+\mathfrak{h}]$.
And it satisfies the Jacobi identity as all the \mathfrak{h} 's pull out to a single one all the way on the right and the result is the 0 coset.
So $\mathfrak{g} / \mathfrak{h}$ has a unique Lie algebra structure for which π is a homomorphism.
$(b)(\Rightarrow)$ If \mathfrak{h} is an ideal, then we have just proven that the quotient map $\pi: \mathfrak{g} \rightarrow \mathfrak{g} / \mathfrak{h}$ is a Lie algebra homomorphism whose kernel is \mathfrak{h}. This completes this direction.
(\Leftarrow) Suppose $\varphi: \mathfrak{g} \rightarrow \mathfrak{p}$ is a homomorphism of Lie algebras, and that $\mathfrak{h}=\operatorname{ker} \varphi$. Then φ is a linear map so \mathfrak{h} is a subspace of \mathfrak{g}. Suppose $x \in \mathfrak{h}$ and $y \in \mathfrak{g}$.
Then $\varphi([x, y])=[\varphi(x), \varphi(y)]=[0, \varphi(y)]=0$, so $[x, y] \in \mathfrak{h}=\operatorname{ker} \varphi$.
Hence \mathfrak{h} is an ideal in \mathfrak{g}. This completes the second direction.

