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Math 214, Homework 8.

7-13. Let n ≥ 1 and U(n) := {A : A∗A = I} ⊆ GL(n,C). U(n) is a group

because I ∈ U(n) and for A,B ∈ U(n), (AB)∗(AB) = B∗A∗AB = B∗B = I.

We show U(n) is a properly embedded submanifold of GL(n,C) with the constant rank
theorem and the equivariant rank theorem on F : GL(n,C)→ M(n,C), F (A) = A∗A.

If GL(n,C) acts on itself by right multiplication and on M(n,C) by conjugation:

For A,B ∈ GL(n,C), F (AB) = (AB)∗(AB) = B∗(A∗A)B = B∗F (A)B.

The right action on GL(n,C) is transitive so F is equivariant and constant rank.

Then U(n) = F−1(I) is a properly embedded submanifold of GL(n,C).

Thus U(n) is a Lie subgroup of GL(n,C).

To find its dimension, we compute the rank of F at I. For t ∈ (−ε, ε) for some ε > 0,
B ∈ M(n,C), F (I + tB) = (I + tB)∗(I + tB) = I + t(B∗ +B) +O(t2),

so the range of dFI is the space of self-adjoint matrices in M(n,C).

Over R, a basis is given by the matrices Ejk + Ekj, iEjk − iEkj for j < k, and Ejj

(where Ejk is the matrix with zeroes and a 1 in position j, k).

There are 2 × 1
2
(n − 1)n + n = n2 basis elements. Since {I} is zero dimensional, the

codimension of U(n) in GL(n,C) is n2 and the dimension of U(n) is 2n2 − n2 = n2.

8-19. R3 is a real vector space. We check that [·, ·] : R3 × R3 → R3 defined [x, y] = x× y
is in fact a Lie bracket. We check the Jacobi identity: For x, y, z ∈ R3:

(x× y)× z + (y × z)× x+ (z × x)× y

= (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)× z
+ (y2z3 − y3z2, y3z1 − y1z3, y1z2 − y2z1)× x
+ (z2x3 − z3x2, z3x1 − z1x3, z1x2 − z2x1)× y

= (x3y1z3 − x1y3z3 − x1y2z2 + x2y1z2, x1y2z1 − x2y1z1 − x2y3z3 + x3y2z3,

x2y3z2 − x3y2z2 − x3y1z1 + x1y3z1)

+ (y3z1x3 − y1z3x3 − y1z2x2 + y2z1x2, y1z2x1 − y2z1x1 − y2z3x3 + y3z2x3,

y2z3x2 − y3z2x2 − y3z1x1 + y1z3x1)

+ (z3x1y3 − z1x3y3 − z1x2y2 + z2x1y2, z1x2y1 − z2x1y1 − z2x3y3 + z3x2y3,

z2x3y2 − z3x2y2 − z3x1y1 + z1x3y1)

= (0, 0, 0)



Recall we may write the cross product as the formal determinant:

(x1, x2, x3)× (y1, y2, y3) = det

 i j k
x1 x2 x3

y1 y2 y3

.

So by the properties of det, × is bilinear and antisymmetric.

Then × is indeed a Lie bracket and R3 with × is a Lie algebra.

8-22. For A an algebra over R, the set of derivations D : A → A, linear maps satisfying
D(xy) = D(x)y + xD(y), is equipped with the bracket [D1, D2] = D1 ◦D2 −D2 ◦D1.

This set is a real vector space because (αD1 +D2)(xy) = αD1(xy) +D2(xy) =

= αD1(x)y + αxD1(y) +D2(x)y + xD2(y) = (αD1 +D2)(x)y + x(αD1 +D2)(y).

It’s closed under the bracket because:

[D1, D2](xy) = D1(D2(xy))−D2(D1(xy))

= D1(D2(x)y + xD2(y))−D2(D1(x)y + xD1(y))

= D1(D2(x))y +D2(x)D1(y) +D1(x)D2(y) + xD1(D2(y))

−D2(D1(x))y −D1(x)D2(y)−D2(x)D1(y)− xD2(D1(y))

= [D1, D2](x)y + x[D1, D2](y)

So [D1, D2] is also a derivation.

The bracket is bilinear because derivations are linear, and antisymmetric since

D1 ◦D2 −D2 ◦D1 = −(D2 ◦D1 −D1 ◦D2).

Finally, the Jacobi identity holds because:

[[D1, D2], D3] + [[D2, D3], D1] + [[D3, D1], D2]

= D1 ◦D2 ◦D3 −D2 ◦D1 ◦D3 −D3 ◦D1 ◦D2 +D3 ◦D2 ◦D1

+D2 ◦D3 ◦D1 −D3 ◦D2 ◦D1 −D1 ◦D2 ◦D3 +D1 ◦D3 ◦D2

+D3 ◦D1 ◦D2 −D1 ◦D3 ◦D2 −D2 ◦D3 ◦D1 +D2 ◦D1 ◦D3

= 0

So the bracket makes the space of derivations into a Lie algebra.

8-28. Considering the Lie group homomorphism det : GL(n,R)→ R∗, the induced Lie algebra
homomorphism is det∗ : gl(n,R)→ R given by det∗B = (det∗B

L)|1
where BL is the left invariant vector field with BL|I = B.

Since by Problem 7-4, (det∗B
L)|1 = d(det)IB

L|I = d(det)IB = tr(B),

we find that det∗ = tr. (Note this is a Lie algebra homomorphism since

tr[A,B] = tr(AB)− tr(BA) = 0 = tr(A)tr(B)− tr(B)tr(A) = [tr(A), tr(B)] ).



8-31. Let g be a Lie algebra and h a subspace.

(a) Suppose h is an ideal in g.

Then if the quotient space g/h = {x+h : x ∈ g} has a Lie algebra structure for which
the quotient map π : g→ g/h : x 7→ x+h is a Lie algebra homomorphism, then the
Lie bracket must be given by [x+ h, y + h] = [π(x), π(y)] = π([x, y]) = [x, y] + h.

Indeed, such a Lie bracket is well defined, because if w+h = x+h and y+h = z+h

then x−w, z− y ∈ h and since h is an ideal, [x−w, y], [z− y, x] ∈ h. Then we find

[w + h, y + h] = [w, y] + h = [w, y] + ([x− w, y]− [z − y, x] + h) =

= [x, y] + [x, z − y] + h = [x, z] + h = [x+ h, z + h]

which proves well-definedness.

And this operation is actually a proper Lie bracket, because it is bilinear as the
original bracket is multilinear. It is antisymmetric as

[x+ h, y + h] = [x, y] + h = −[y, x] + h = −([y, x] + h) = −[y + h, x+ h].

And it satisfies the Jacobi identity as all the h’s pull out to a single one all the way
on the right and the result is the 0 coset.

So g/h has a unique Lie algebra structure for which π is a homomorphism.

(b) (⇒) If h is an ideal, then we have just proven that the quotient map π : g → g/h
is a Lie algebra homomorphism whose kernel is h. This completes this direction.

(⇐) Suppose ϕ : g → p is a homomorphism of Lie algebras, and that h = kerϕ.
Then ϕ is a linear map so h is a subspace of g. Suppose x ∈ h and y ∈ g.

Then ϕ([x, y]) = [ϕ(x), ϕ(y)] = [0, ϕ(y)] = 0, so [x, y] ∈ h = kerϕ.

Hence h is an ideal in g. This completes the second direction.


