Math 214, Homework 9.

21-1. Let G be a Lie group acting continuously on a topological manifold M.
Suppose the action map $(\cdot): G \times M \rightarrow M$ is proper.
Then, for any compact $K \subseteq M \times M$, let $\pi_{1}, \pi_{2}: M \times M \rightarrow M$ be the projection maps onto the first and second coordinates. By definition both maps are continuous, so $K_{1}=\pi_{1}(K)$ and $K_{2}=\pi_{2}(K)$ are compact subsets of M.
Then $K_{1} \times K_{2}$ is compact and contains K.
Now, let $\Theta: G \times M \rightarrow M \times M$ be the map $(g, p) \mapsto(p, g \cdot p)$.
Then $\Theta^{-1}\left(K_{1} \times K_{2}\right)=\left\{(g, p): p \in K_{1}, g \cdot p \in K_{2}\right\}$

$$
\begin{aligned}
& =\left\{(g, p): p \in K_{1}\right\} \cap\left\{(g, p): g \cdot p \in K_{2}\right\} \\
& =\left(G \times K_{1}\right) \cap(\cdot)^{-1}\left(K_{2}\right)
\end{aligned}
$$

which, as the intersection of a closed set and a compact set, is compact.
Since $M \times M$ is Hausdorff, K is closed, and thus $\Theta^{-1}(K)$ is a closed subset of the compact set $\Theta^{-1}\left(K_{1} \times K_{2}\right)$. So $\Theta^{-1}(K)$ is compact.
Thus Θ is proper, and so is the action.
But the action may be proper while the action map is not.
Indeed, let $G=M=\mathbb{R}, G$ acting on M by addition.
Then $(\cdot)^{-1}(0)=\{(x,-x): x \in \mathbb{R}\}$, which is not compact.
So the action map is not proper. However, for $n \in \mathbb{N}$,
$\Theta^{-1}([-n, n] \times[-n, n])=\{(t, x): x \in[-n, n], t+x \in[-n, n]\} \subseteq[-2 n, 2 n] \times[-n, n]$
is bounded, so the preimage of any compact subset of \mathbb{R}^{2} under Θ is closed and bounded, hence compact. So Θ and the action are proper.

21-5. Suppose a Lie group G acts smoothly and freely on a smooth manifold M.
Suppose that the orbit space M / G has a smooth manifold structure for which the quotient map $\pi: M \rightarrow M / G$ is a smooth submersion.
Then for any neighborhood $U \subseteq M / G$ and any smooth local section $\sigma: U \rightarrow M$ of π, the map $f:(g, x) \mapsto g \cdot \sigma(x)$ on $G \times U$ is smooth. If $g \cdot \sigma(x)=h \cdot \sigma(y)$ then $x=\pi(\sigma(x))=\pi(g \cdot \sigma(x))=\pi(h \cdot \sigma(y))=\pi(\sigma(y))=y$, so $g \cdot \sigma(x)=h \cdot \sigma(x)$
and since the action is free $g=h$ and f is injective.
Also, for $p \in \pi^{-1}(U), \pi(p) \in U$, and $\sigma(\pi(p)) \in\{g \cdot p: g \in G\}$.
Then there is an $h \in G$ such that $f(h, \pi(p))=h \cdot \sigma(\pi(\varphi))=p$, and f maps onto $\pi^{-1}(U)$.
As a smooth, bijective map to $\pi^{-1}(U), f$ is a homeomorphism when restricted to any compact subset of $G \times U$. In particular, if p_{i} is a sequence in $\pi^{-1}(U)$ such that $p_{i} \rightarrow p \in \pi^{-1}(U)$, we may restrict to a neighborhood of $f^{-1}(p)$ with compact closure in $G \times U$ and this compact neighborhood will be mapped homeomorphically to compact neighborhood of p in $\pi^{-1}(U)$. Taking a tail of the sequence which maps into this neighborhood, it pulls back to a convergent sequence in $G \times U$. So $f^{-1}\left(p_{i}\right)$ converges.

Let $p_{i} \in M, g_{i} \in G$ be sequences such that $p_{i} \rightarrow p$ and $g_{i} \cdot p_{i} \rightarrow q$. Then picking a local section $\sigma: U \rightarrow M$ with $\pi(q) \in U$, we have that $\pi\left(g_{i} \cdot p_{i}\right)=\pi\left(p_{i}\right) \rightarrow \pi(q)$, so that $\pi\left(g_{i} \cdot p_{i}\right), \pi\left(p_{i}\right)$ are in U for large enough i.
Then $g_{i} \cdot p_{i}, p_{i} \in \pi^{-1}(U)$ for such i, and applying f^{-1} we find sequences $h_{i}, k_{i} \in G$ such that $h_{i} \cdot \sigma\left(\pi\left(p_{i}\right)\right)=p_{i}, k_{i} \cdot \sigma\left(\pi\left(p_{i}\right)\right)=g_{i} \cdot p_{i}$, and that $\left(h_{i}, \pi\left(p_{i}\right)\right),\left(k_{i}, \pi\left(p_{i}\right)\right)$ are convergent sequences in $G \times M / G$. Then h_{i}^{-1} and k_{i} are convergent sequences in G.
Moreover, $\left(k_{i}^{-1} g_{i} h_{i}\right) \cdot \sigma\left(\pi\left(\varphi_{i}\right)\right)=\left(k_{i}^{-1} g_{i}\right) \cdot p_{i}=k_{i}^{-1} \cdot\left(k_{i} \cdot \sigma\left(\pi\left(\varphi_{i}\right)\right)\right)=\sigma\left(\pi\left(\varphi_{i}\right)\right)$, so by freeness of the action $k_{i}^{-1} g_{i} h_{i}=e$ and $g_{i}=k_{i} h_{i}^{-1}$. The product of convergent sequences is convergent. Thus g_{i} converges and we have shown that the action is proper.

21-9. Let \mathbb{Z} act on \mathbb{R}^{2} by $n \cdot(x, y)=\left(x+n,(-1)^{n} y\right)$.
The action is smooth because \mathbb{Z} is zero-dimensional, so we may fix n and vary (x, y) to check smoothness (upon which the action map is affine, hence smooth).
To check freeness, suppose $(x, y) \in \mathbb{R}^{2}$ and that $n \cdot(x, y)=(x, y)$. Then $x+n=x$, so $n=0$. Thus only the identity element fixes any (x, y) and the action is free.
To check properness, suppose $\left(x_{k}, y_{k}\right)$ is a sequence in \mathbb{R}^{2} which converges, n_{k} a sequence in \mathbb{Z}, and that $n_{k} \cdot\left(x_{k}, y_{k}\right)$ converges in \mathbb{R}^{2}. Then $\left(x_{k}+n_{k},(-1)^{n_{k}} y_{k}\right)$ converges, so in particular $x_{k}+n_{k}$ converges. The difference of two convergent sequences in \mathbb{R} is convergent, so $x_{k}+n_{k}-x_{k}=n_{k}$ is convergent.
By the equivalent characterizations of properness, this shows that the action is proper.
Now, with \mathbb{Z} acting on \mathbb{R} by translation, we can consider \mathbb{R}^{2} to be the trivial vector bundle over \mathbb{R} by the map $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \mapsto x$. \mathbb{Z} acts smoothly, freely, and properly on \mathbb{R} and \mathbb{R}^{2}, and π is \mathbb{Z}-equivariant (since the action in the first variable is just the action on \mathbb{R}).
Moreover, when x and n are fixed, the map $y \mapsto(-1)^{n} y$ is linear. Then we can define the map $\pi^{\prime}: \mathbb{R}^{2} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ by $\mathbb{Z} \cdot(x, y) \mapsto \mathbb{Z} \cdot x$, this is well-defined because if $\mathbb{Z} \cdot(x, y)=\mathbb{Z} \cdot(u, v)$ then $x=u+n$ for some n and $\mathbb{Z} \cdot x=\mathbb{Z} \cdot u$.
π is a surjective smooth map, for $x \in \mathbb{R} / \mathbb{Z}$ we have $\pi^{-1}(x) \cong \mathbb{R}$, and we may take local trivializations to be the identity map into \mathbb{R}^{2} on slices $((-\varepsilon+x, \varepsilon+x) \times \mathbb{R}) / \mathbb{Z}$.
This, as a sketch of problem 21-8, shows that the Mobius bundle over $S^{1}=\mathbb{R} / \mathbb{Z}$, defined exactly to be $\mathbb{R}^{2} / \mathbb{Z}$, is a nontrivial smooth rank-1 vector bundle (nontrivial because when one moves from x to $x+1$, by the action the y coordinate is negated).
Also, by theorem 21.13 the quotient map is a smooth normal covering map. (Since we haven't covered anything around covering maps or covering groups, my assumption is that this part of the question is not required).

21-16. For V an n-dimensional vector space, $K=\left(k_{1}, \ldots, k_{m}\right)$ with $0<k_{1}<\cdots<k_{m}<n$, we have an action of $\mathrm{GL}(V)$ on $\mathrm{F}_{K}(V)$ by $A \cdot\left(S_{1}, \ldots, S_{m}\right)=\left(A S_{1}, \ldots, A S_{m}\right)$. For any $\left(S_{1}, \ldots, S_{m}\right),\left(T_{1}, \ldots, T_{m}\right) \in \mathrm{F}_{K}(V)$, we may pick bases $\left\{e_{1}, \ldots, e_{k_{1}}\right\},\left\{f_{1}, \ldots, f_{k_{1}}\right\}$ for S_{1} and T_{1}, complete each to bases $\left\{e_{1}, \ldots, e_{k_{2}}\right\}$ and $\left\{f_{1}, \ldots, f_{k_{2}}\right\}$ for S_{2} and T_{2}, and so on until we have bases $\left\{e_{1}, \ldots, e_{n}\right\},\left\{f_{1}, \ldots, f_{n}\right\}$ for V, where for each i from 1 to $m,\left\{e_{1}, \ldots, e_{k_{i}}\right\}$ is a basis for S_{i} and $\left\{f_{1}, \ldots, f_{k_{i}}\right\}$ is a basis for T_{i}. Then simply let $A \in \mathrm{GL}(V)$ be the linear map with $A\left(e_{i}\right)=f_{i}$, so that $A S_{i}=T_{i}$ and $A \cdot\left(S_{1}, \ldots, S_{m}\right)=\left(A S_{1}, \ldots, A S_{m}\right)=\left(T_{1}, \ldots, T_{m}\right)$. This shows the action is transitive.

Given a flag $S=\left(S_{1}, \ldots, S_{m}\right)$, the isotropy subgroup $G_{S}=\left\{A \in \mathrm{GL}(V): A S_{i}=S_{i} \forall i\right\}$
in the basis $\left\{e_{i}\right\}$ above is given by the matrices $\left(\begin{array}{cccc}A_{1} & & * & * \\ & A_{2} & & * \\ 0 & & \ddots & \\ 0 & 0 & & A_{m+1}\end{array}\right)$
where A_{i} is an invertible $\left(k_{i}-k_{i-1}\right) \times\left(k_{i}-k_{i-1}\right)$ matrix (with $k_{0}=0, k_{m+1}=n$).
Indeed, such matrices are invertible because their determinant is the product of the determinants of the A_{i}, which is nonzero, and such matrices fix the flag because $\left\{e_{1}, \ldots, e_{k_{i}}\right\}$ are sent to linear combinations of $\left\{e_{1}, \ldots, e_{k_{i}}\right\}$.
Such a subgroup is closed as the preimage of the zero vector in the map which picks out all matrix elements under the spaces taken up by the A_{i}.

Then by Theorem $21.20, \mathrm{~F}_{K}(V)$ has a unique smooth manifold structure which makes the action of $\mathrm{GL}(V)$ smooth, and $\operatorname{dim} \mathrm{F}_{K}(V)=\operatorname{dim} \mathrm{GL}(V)-\operatorname{dim} G_{S}=$ $=n^{2}-\left(n^{2}-k_{1}\left(k_{2}-k_{1}\right)-k_{2}\left(k_{3}-k_{2}\right)-\cdots-k_{m}\left(n-k_{m}\right)\right)=\sum_{i=1}^{m} k_{i}\left(k_{i+1}-k_{i}\right)$.

In fact, $\mathrm{F}_{K}(V)$ is compact (no matter what K is) since $\mathrm{O}(V)$ also acts transitively on $\mathrm{F}_{K}(V)$, we do the same as when we showed $\mathrm{GL}(V)$ acts transitively but we just normalize the $\left\{f_{i}\right\}$ basis with respect to the $\left\{e_{i}\right\}$ basis (taking an inner product on V for which $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$). Then by the Homogeneous Space Characterization Theorem, $\mathrm{F}_{K}(V)$ is a quotient manifold of $\mathrm{O}(V)$, hence compact since $\mathrm{O}(V)$ is compact.

19-1. Suppose D is a smooth involutive distribution on M. Let $\mathcal{J}(D)$ be the space of differential forms on M which annihilate D. First of all, this is an ideal. Indeed, if ω is a p-form which annihilates D and η is any 1 -form, then for smooth sections X_{1}, \cdots, X_{p+1}, we have $(\eta \wedge \omega)\left(X_{1}, \ldots, X_{p+1}\right)=\sum_{i}(-1)^{i+1} \eta\left(X_{i}\right) \omega\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{p+1}\right)=0$
So for any form η, we may write η as a sum of wedge products of 1 -forms and by associativity of the wedge product $\eta \wedge \omega$ annihilates D. So $\mathcal{J}(D)$ is an ideal.
Moreover, for any p-form $\eta \in \mathcal{J}(D)$ and any neighborhood U in M on which we have local defining forms for $D, \omega^{1}, \ldots, \omega^{n-k}$,
we have that $\eta=\sum_{i} \omega^{i} \wedge \beta^{i}$ for some ($p-1$)-forms β^{i} on U by Lemma 19.6.
Then $d \eta=\sum_{i} d \omega^{i} \wedge \beta^{i}+(-1)^{p-1} \omega^{i} \wedge d \beta^{i}$.
By the 1-form criterion for involutivity, the $d \omega^{i}$ annihilate D, so $d \omega^{i}, \omega^{i} \in \mathcal{J}\left(\left.D\right|_{U}\right)$ and $d \eta \in \mathcal{J}\left(\left.D\right|_{U}\right)$ since $\mathcal{J}\left(\left.D\right|_{U}\right)$ is an ideal. The holds in a neighborhood of any $p \in M$. So $d \eta$ annihilates all of D, and $d \eta \in \mathcal{J}(D)$. Thus $\mathcal{J}(D)$ is a differential ideal.

Now, suppose D is just a smooth distribution, and that $\mathcal{J}(D)$ is a differential ideal. Then for any open set $U \subseteq M$, we have that $\mathcal{J}\left(\left.D\right|_{U}\right)$ is a differential ideal since restricting forms to neighborhoods does not affect their differential (which is locally defined). Then in particular, for any smooth 1-form ω that annihilates D on $U, \omega \in \mathcal{J}\left(\left.D\right|_{U}\right)$, so $d \omega \in \mathcal{J}\left(\left.D\right|_{U}\right)$ and $d \omega$ also annihilates D on U.

This is the 1-form criterion for involutivity. So D is an involutive distribution.

