

Figure 2.1
we see that $\Omega^{0}(U) \oplus \Omega^{0}(V) \rightarrow \Omega^{0}\left(\mathbb{R}^{1}\right)$ is surjective. For a general manifold M, if $\omega \in \Omega^{q}(U \cap V)$, then ($\left.-\rho_{V} \omega, \rho_{U} \omega\right)$ in $\Omega^{q}(U) \oplus \Omega^{q}(V)$ maps onto ω.

The Mayer-Vietoris sequence

$$
0 \rightarrow \Omega^{*}(M) \rightarrow \Omega^{*}(U) \oplus \Omega^{*}(V) \rightarrow \Omega^{*}(U \cap V) \rightarrow 0
$$

induces a long exact sequence in cohomology, also called a Mayer-Vietoris sequence:

$$
\left.\begin{array}{l}
\left(H^{q+1}(M) \rightarrow H^{q+1}(U) \oplus H^{q+1}(V) \rightarrow H^{q+1}(U \cap V)\right. \tag{2.4}
\end{array} d^{*}\right)
$$

We recall again the definition of the coboundary operator d^{*} in this explicit instance. The short exact sequence gives rise to a diagram with exact rows

$$
\begin{aligned}
& \begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
0 \rightarrow & & \uparrow \\
\Omega^{q+1}(M)
\end{array} \rightarrow \Omega^{q+1}(U) \oplus \Omega^{q+1}(V) \rightarrow \Omega^{q+1}(U \cap V) \quad \rightarrow 0 \\
& d \uparrow \quad d \uparrow \quad d \uparrow \\
& 0 \rightarrow \quad \Omega^{q}(M) \quad \rightarrow \quad \Omega^{q}(U) \oplus \Omega_{(}^{q}(V) \quad \rightarrow \quad \Omega^{q}(U \cap V) \quad \rightarrow 0 \\
& \begin{array}{lll}
\Psi & \omega & \\
\xi & \omega & d \omega=0
\end{array}
\end{aligned}
$$

Let $\omega \in \Omega^{q}(U \cap V)$ be a closed form. By the exactness of the rows, there is a $\xi \in \Omega^{q}(U) \oplus \Omega^{q}(V)$ which maps to ω, namely, $\xi=\left(-\rho_{V} \omega, \rho_{U} \omega\right)$. By the
commutativity of the diagram and the fact that $d \omega=0, d \xi$ goes to 0 in $\Omega^{q+1}(U \cap V)$, i.e., $-d\left(\rho_{V} \omega\right)$ and $d\left(\rho_{U} \omega\right)$ agree on the overlap $U \cap V$. Hence $d \xi$ is the image of an element in $\Omega^{q+1}(M)$. This element is easily seen to be closed and represents $d^{*}[\omega]$. As remarked earlier, it can be shown that $d^{*}[\omega]$ is independent of the choices in this construction. Explicitly we see that the coboundary operator is given by

$$
d^{*}[\omega]=\left\{\begin{array}{ccc}
{\left[-d\left(\rho_{V} \omega\right)\right]} & \text { on } & U \tag{2.5}\\
{\left[d\left(\rho_{U} \omega\right)\right]} & \text { on } & V .
\end{array}\right.
$$

We define the support of a form ω on a manifold M to be Supp ω $=\{p \in M \mid \omega(p) \neq 0\}$. Note that in the Mayer-Vietoris sequence $d^{*} \omega \in$ $H^{*}(M)$ has support in $U \cap V$.
Example 2.6 (The cohomology of the circle). Cover the circle with two open sets U and V as shown in Figure 2.2. The Mayer-Vietoris sequence gives

	S^{1}		$U 【 V$	
H^{2}	0		0	
$\rightarrow H^{1}$		\longrightarrow	0	
H^{0}		\longrightarrow	0	

The difference map δ sends (ω, τ) to $(\tau-\omega, \tau-\omega)$, so im δ is 1 dimensional. It follows that ker δ is also 1 -dimensional. Therefore,

$$
\begin{aligned}
& H^{0}\left(\boldsymbol{S}^{1}\right)=\operatorname{ker} \delta=\mathbb{R} \\
& H^{1}\left(S^{1}\right)=\operatorname{coker} \delta=\mathbb{R} .
\end{aligned}
$$

We now find an explicit representative for the generator of $H^{1}\left(S^{1}\right)$. If $\alpha \in \Omega^{0}(U \cap V)$ is a closed 0 -form which is not the image under δ of a closed form in $\Omega^{0}(U) \oplus \Omega^{0}(V)$, then $d^{*} \alpha$ will represent a generator of $H^{1}\left(S^{1}\right)$. As α we may take the function which is 1 on the upper piece of $U \cap V$ and 0 on

Figure 2.2

