

we see that $\Omega^{0}(U) \oplus \Omega^{0}(V) \to \Omega^{0}(\mathbb{R}^{1})$ is surjective. For a general manifold M, if $\omega \in \Omega^{q}(U \cap V)$, then $(-\rho_{V}\omega, \rho_{U}\omega)$ in $\Omega^{q}(U) \oplus \Omega^{q}(V)$ maps onto ω .

The Mayer-Vietoris sequence

$$0 \to \Omega^*(M) \to \Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V) \to 0$$

induces a long exact sequence in cohomology, also called a Mayer-Vietoris sequence:

(2.4)
$$(H^{q+1}(M) \to H^{q+1}(U) \oplus H^{q+1}(V) \to H^{q+1}(U \cap V) \longrightarrow d^{*}$$
$$(H^{q}(M) \to H^{q}(U) \oplus H^{q}(V) \to H^{q}(U \cap V) \longrightarrow d^{*}$$

We recall again the definition of the coboundary operator d^* in this explicit instance. The short exact sequence gives rise to a diagram with exact rows

Let $\omega \in \Omega^q(U \cap V)$ be a closed form. By the exactness of the rows, there is a $\xi \in \Omega^q(U) \oplus \Omega^q(V)$ which maps to ω , namely, $\xi = (-\rho_V \omega, \rho_U \omega)$. By the commutativity of the diagram and the fact that $d\omega = 0$, $d\xi$ goes to 0 in $\Omega^{q+1}(U \cap V)$, i.e., $-d(\rho_V \omega)$ and $d(\rho_U \omega)$ agree on the overlap $U \cap V$. Hence $d\xi$ is the image of an element in $\Omega^{q+1}(M)$. This element is easily seen to be closed and represents $d^*[\omega]$. As remarked earlier, it can be shown that $d^*[\omega]$ is independent of the choices in this construction. Explicitly we see that the coboundary operator is given by

(2.5)
$$d^{*}[\omega] = \begin{cases} [-d(\rho_{V} \omega)] & \text{on } U \\ [d(\rho_{U} \omega)] & \text{on } V. \end{cases}$$

We define the support of a form ω on a manifold M to be Supp $\omega = \{ p \in M | \omega(p) \neq 0 \}$. Note that in the Mayer-Vietoris sequence $d^*\omega \in H^*(M)$ has support in $U \cap V$.

EXAMPLE 2.6 (The cohomology of the circle). Cover the circle with two open sets U and V as shown in Figure 2.2. The Mayer-Vietoris sequence gives

The difference map δ sends (ω, τ) to $(\tau - \omega, \tau - \omega)$, so im δ is 1-dimensional. It follows that ker δ is also 1-dimensional. Therefore,

$$H^{0}(S^{1}) = \ker \, \delta = \mathbb{R}$$
$$H^{1}(S^{1}) = \operatorname{coker} \, \delta = \mathbb{R}.$$

We now find an explicit representative for the generator of $H^1(S^1)$. If $\alpha \in \Omega^0(U \cap V)$ is a closed 0-form which is not the image under δ of a closed form in $\Omega^0(U) \oplus \Omega^0(V)$, then $d^*\alpha$ will represent a generator of $H^1(S^1)$. As α we may take the function which is 1 on the upper piece of $U \cap V$ and 0 on

Figure 2.2