Cohomology:
(1) compactly supp cohomology
(2) Poincare duality.
(3) Mayer-Vietoris sequence. (SES \rightarrow LES).
(4) (etch cohomology (sheaf chomology).

- De Rham complex: M sm mfd. $\operatorname{dim} M=n$.

$$
\Omega^{0}(M) \xrightarrow{d} \Omega^{\prime}(M) \xrightarrow{d} \Omega^{2}(M) \rightarrow \cdots \rightarrow \Omega^{n}(M) .
$$

Aside: given a p-form w on M, and a smooth $c p t \stackrel{p-d i m}{\text { sub mod }} l: S \hookrightarrow M$, we can do integration.

$$
\int_{S} w=\int_{S} l^{*} w \quad\binom{p \text {-form } l * w}{\text { on a } p \text {-dim } S} \text {. }
$$

- if ω is closed p-form, then
$\int_{S} w$ is invariant under "deformation of S $\omega_{u}^{\omega} \in \Omega^{\prime}\left(\mathbb{R}^{2} \mid 0\right) \quad \partial S=\varnothing . \quad S \quad c p t$.
Ex. $\int_{S} \frac{x d y-y d x}{x^{2}+y^{2}}$

- compactly support de Rham:
- we say $\omega \in \Omega^{P}(M)$ is compactly supported, if $\exists K \subset M$ compact set, such $\left.w\right|_{M I K}=0$
- (the condition is vacuous, if M is pt itself).

$$
\Omega_{c}^{0}(M) \xrightarrow{d} \Omega_{c}^{1}(M) \xrightarrow{d} \Omega_{c}^{2}(M) \rightarrow \cdots
$$

(\because if ω is aptly supp. then du is also aptly supp.).

$$
H_{c}^{*}(M)=H^{*}(\underbrace{\Omega_{c}^{*}(M)}, d) .
$$

Ex: $\quad M=\mathbb{R}$
aptly supp for:
f

- so: if f is aptly supp. and $d f=0$.

$$
\begin{aligned}
& \quad \Rightarrow f(x)=0 . \quad \forall x \in \mathbb{R} \\
& \therefore \quad H_{c}^{0}(\mathbb{R})=Z^{0}\left(\Omega_{c}^{*}(\mathbb{R})\right)=0 . \\
& H_{c}^{\prime}(\mathbb{R})=\frac{Z_{c}^{\prime}(\mathbb{R})}{B_{c}^{\prime}(\mathbb{R})}=\frac{\left\{\omega \in \Omega_{c}^{\prime},\right.}{\left\{d f: f \in \Omega^{0}\right\}}
\end{aligned}
$$

$$
\begin{array}{r}
w=g(x) d x \\
\int_{-\infty}^{+\infty} w=\int_{-\infty}^{+\infty} g(x) d x
\end{array}
$$

$$
g \in C_{0}^{\infty}(\mathbb{R})
$$

$$
\int_{-\infty}^{+\infty} d f=\left.f(x)\right|_{-\infty} ^{+\infty}=0
$$

claim: $\omega \in B_{c}^{\prime}(\mathbb{R})$. iff $\int_{-\infty}^{\infty} \omega=0$
indeed: we can define $f(x)=\int_{-\infty}^{x} w$

$$
\begin{aligned}
& H_{c}^{\prime}(\mathbb{R}) \simeq \mathbb{R} . \\
& {\left[-\int_{0}^{\mathbb{1}}\right] \quad \mapsto 1} \\
& \omega=g(x) d x \\
& \int_{-\infty}^{+\infty} g(x) d x=1 .
\end{aligned}
$$

Stokes The:

$$
\begin{gathered}
\langle S, \quad d \eta\rangle=\langle\partial S, \eta\rangle \\
S: \quad k-m f d \\
\eta: \quad(k-1)-\text { form }
\end{gathered}
$$

$$
M=\mathbb{R}, \quad S=\{0\} \subset \mathbb{R} .
$$

Goal: represent S using diff form: a burp form. situated at S. Fix a positive function $P(x)$, s.t. want have

$$
\operatorname{supp}(\rho) \subset[-1,1]
$$

$$
\begin{array}{lr}
\omega_{S, \varepsilon}:=P_{\varepsilon}(x) d x . & \int_{-1}^{1} \rho(x) d x=1 \\
& \mathbb{R}^{n}, S=\{0\}, P_{S, \varepsilon}=P_{\varepsilon}(x)=\frac{1}{\varepsilon} P\left(\frac{x}{\varepsilon}\right) .
\end{array}
$$

$$
\frac{n}{-1}
$$

pump form at $0 . \int_{R_{n}} w=1$

- M^{n} sm $\mathrm{mfd} . \quad S^{k} C M$ opt sm. submitted.

$$
U(S) \simeq V \subset N S
$$

tubular mind $\tau_{\text {nh }}$ of around S

$$
\begin{gathered}
\left(0 \rightarrow T S \rightarrow T M I_{S} \rightarrow N S \rightarrow 0\right) \\
N S=\frac{T M I_{S}}{T S .}
\end{gathered}
$$

- then we produce ω_{S}, to be a $(n-k)$-form,
along the fiber of the normal bundle".
- concentrated rear S
(0) restriction to each normal slice is a bump-form of $(n-k)$-deg.
- we have a way to go from cpi sm subuffed to.

$$
\Omega \stackrel{n-k}{\underline{c}}(M) .
$$

- Poincaré Duality:

$$
([\alpha],[\beta]) \longmapsto \int_{M} \alpha \wedge \beta .
$$

this pairing is a perfat paring.

$$
p: V \times W \rightarrow \mathbb{R}
$$

$$
\text { if } v \in V \quad v \neq 0
$$

Ex:

$$
\begin{aligned}
\mathbb{R} \quad H^{0} & \cong \mathbb{R}, \ldots H_{c}^{0}=0 \\
H^{\prime} & =0 \ldots H_{c}^{\prime}=\mathbb{R} . \\
\operatorname{dim} H^{k} & =\operatorname{dim} H_{c}^{n-k .}
\end{aligned}
$$

$$
\exists \omega \in \omega \text {, }
$$

$$
\frac{p(v, w) \neq 0 .}{v=n} .
$$

$$
\underline{n^{n} V} \times \Lambda^{n+2} y \rightarrow n^{n} v=\mathbb{R}
$$

- $S \subset M_{K}, k$-dim iubufol. .pt. $\omega \in \Omega^{k}(M)$

$$
\begin{gathered}
\left([\omega],\left[\omega_{s}\right]\right)=\int_{s} w_{n} . \\
\int_{M .} w \wedge \omega_{s}
\end{gathered}
$$

- $M V$ sequence: $\quad M=u \cup V$.

Question: compute $H^{*}(M)$ using $H^{*}(U), H^{*}(V)$, $H^{*}(u \cap v) ?$

$$
\begin{aligned}
& \text { • } \left.\forall k \in\{0, \cdots, n\} . \text { sSs. }^{\text {(}}, \underline{\beta}\right) \quad \longmapsto \frac{\left.\alpha\right|_{\text {unv }}-\left.\beta\right|_{\text {unv }}}{} \\
& 0 \rightarrow \Omega^{k}(-M) \xrightarrow{p} \Omega^{k}(u) \oplus \Omega^{k}(v) \xrightarrow{\&} \Omega^{k}(u \cap v) \rightarrow 0
\end{aligned}
$$

by restriction.

$$
\text { exact means: }\left\{\begin{array}{l}
: \operatorname{ker}(p)=0 \\
q \quad \text { is surjective } \\
-\quad \operatorname{ker}(q)=\operatorname{im}(p) .
\end{array}\right.
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
A^{2} \\
\uparrow
\end{array} \quad B^{2}-C^{2} \rightarrow \\
& 0 \rightarrow \text { A ES: } \\
& A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime} \rightarrow 0 \\
\uparrow & 1 \\
& \\
& A^{0} \rightarrow B^{0} \rightarrow C^{0} \rightarrow 0
\end{aligned}
$$

then one can take cohomolyy in each colone.

$$
\begin{aligned}
& \rightarrow H^{\prime}(A) \rightarrow H^{\prime}(B) \rightarrow H^{\prime}(C) \\
& 0 \rightarrow H^{\circ}(A) \rightarrow H^{\circ}(B) \rightarrow H^{\circ}(C)
\end{aligned}
$$

MU seq:

$$
\begin{aligned}
& \longleftrightarrow H^{\prime}(M) \rightarrow H^{d}(u) \oplus H^{\prime}(V) \rightarrow \cdots \\
& 0 \rightarrow H^{0}(M) \rightarrow H^{\circ}(u) \oplus H^{\circ}\left(V^{\prime}\right) \rightarrow H^{0}(u \cap u)>
\end{aligned}
$$

IX i compute $H^{*}\left(S^{n}\right)$.

$$
S^{n}=D^{n} \bigcup_{S^{n-1}} D^{n}
$$

$$
\begin{gathered}
\{\alpha] \rightarrow ? \\
H^{k}(u \cap v) \rightarrow H^{k+1}(M) \\
\alpha \in \Omega^{k}(u \cap v) \quad \cdot d \alpha=0 . \\
P_{u}+P_{v}=1 \\
d\left(\alpha \cdot P_{u}\right) \quad \alpha \cdot P_{v}
\end{gathered}
$$

