Jordan Normal Form 2022. 11.15 . Let $\mathbb K$ be any field $(\mathbb Q, \mathbb C, \sigma$ $\mathbb F_q)$ Let V be a finite w dim v .s. over K .

Let
$$
T: V \rightarrow V
$$
 be a linear operator on V
we want to classify T up to "similarity transform

We say T and \widetilde{T} are similar, if $\exists V \stackrel{C}{\longrightarrow} V$ invertible transformation. such that $T = C \cdot \tilde{T} \cdot C^{-1}$ $\begin{array}{ccc}\n & \searrow & \searrow & \vee \\
& \downarrow & & \downarrow & \swarrow \\
& \searrow & & \searrow & \swarrow \\
& \searrow & & \searrow & \searrow \\
& \searrow & & \searrow & \searrow\n\end{array}$

In other words, we want to find a nice basis of V , such that T \prime looks as diagonal as possible".

 $n = dim_{\mathbf{k}} V$ · characteristic polynomial on $T : U \rightarrow U$ det $(\lambda \cdot I - T) = \lambda^n + p_1 \cdot \lambda^{n-1} + \cdots + p_n$

determinant for a linear operator
$$
A: V \rightarrow V
$$
:
\n• pick any basis $e_1, ..., e_n \rightarrow V$,
\nthen A become a matrix, such that
\n $Ae_i = A_{i1}e_1 + ... + A_{in}e_n$.
\n $det(A) = det (CAI)$

\n- If we choose a different basis, say
\n- $$
\widetilde{e}_1, \cdots, \widetilde{e}_n
$$
. Then the corresponding matrix $\widetilde{[A]} = C$ $[A] \cdot C^{-1}$
\n- thus det $(C\widetilde{A}3) = \det(C \cdot (A \cdot C^{-1}))$
\n- $= \det(C) \cdot \det(C)^{-1} \cdot \det(C)$
\n- $= \det(C) \cdot \det(C)^{-1} \cdot \det(C)$
\n

- · Assume λ o E K is a root of the characteristic polynomial, $i.e.$ det $(\lambda_0 I - T) = 0$.
	- · If $\gamma \in V$ satisfies $T \cdot \chi = \lambda \cdot \chi$ and $x \neq 0$, then we say χ is an eigenvector of T with eigenvalue Mo.
	- · ker (n. I-T): eigenspace of T with eigenvalue λ_{\bullet} = 2×6 V | $7 \times 7 = 20 \times 3$.
	- · root space (or genoralized eigenspace). of eigenvalue no.

 $A_{\tilde{c}}$

Consider
$$
T-\lambda_{0}I: V \rightarrow V
$$
.
and its power $(T-\lambda_{0}I)^{2}$, $(T-\lambda_{0}I)^{3}$, ---

if
$$
(T - \lambda_0 I)^k \cdot \chi = 0
$$
, then
\n $(T - \lambda_0 I)^{k+1} \cdot \chi = (T - \lambda_0 I) \cdot (T - \lambda_0 I)^k \cdot \chi = 0$
\nker $(T - \lambda_0) \subset \text{ker}(T - \lambda_0)^k \subset \text{Per}(T - \lambda_0 I)^{k+1} \subset \text{Per}(T - \lambda_0 I)^k$

$$
W_{\lambda} := \text{ker}((T-\lambda)^{m}) = \text{ker}((T-\lambda)^{m+1}) = \cdots
$$

\n T root space. for λ .

$$
U_{\lambda_{o}}:=\text{im}\left(\left(T-\lambda_{o}\right)^{m}\right)
$$

Lemma : 0
$$
W_{\lambda_{0}}
$$
 and $U_{\lambda_{0}}$ are T -invariant.
\n $\cdot W_{\lambda_{0}} \cap U_{\lambda_{0}} = \{\infty\}$
\n $\cdot V = W_{\lambda_{0}} \oplus U_{\lambda_{0}}$

 $Pf: O$ If $U \in W$)., then $(T - \lambda_0)^m$. $U = 0$.

$$
(T - \lambda J)^{m} (T_{V}) = T \cdot (T - \lambda J)^{m} \cdot V = 0
$$

\n
$$
\Rightarrow T_{V} \in W_{\lambda_{o}}
$$

\nIf $v \in U_{\lambda_{o}}$, then $J \tilde{V} \in V$, set.
\n
$$
V = (T - \lambda J)^{m} \cdot \tilde{V} \cdot \tilde{V}
$$

\nThen $T_{V} = T \cdot (T - \lambda J)^{m} \cdot \tilde{V}$
\n
$$
= (T - \lambda J)^{m} \cdot (T\tilde{V})
$$

\n
$$
\therefore T_{V} \in U_{\lambda_{o}}
$$

Suppose OF U E Uno n Who then V T X.IM T and T d I U 0

$$
\Rightarrow (T - \lambda_{0}I)^{m} \cdot (T - \lambda_{0}I)^{m} \cdot \tilde{V} = 0
$$

\n
$$
\Rightarrow \tilde{V} \in \text{ker} (T - \lambda_{0}I)^{2m} \text{ but}
$$

\n
$$
\tilde{V} \notin \text{ker} (T - \lambda_{0}I)^{m} \text{ but}
$$

\nthis contradicts with ker} $(T - \lambda_{0}I)^{m} = \text{ker}(T - \lambda_{0}I)^{m}$

Thus,
$$
5s^{2} = U \lambda_{0} \wedge W \lambda_{0}
$$

$$
(3) \cdot Recall \quad \text{for any } \text{in map} \\ A: \quad V_1 \rightarrow V_2, \\ \text{we have } \quad \dim V_1 = \dim \text{ker } A + \dim \text{ im } A. \\ \text{apply this to } \\ f - \lambda_0 I \qquad \qquad : \quad V \rightarrow V
$$

we get
\ndim V = dim W_{λo} + dim U_{λo}
\n• Recall that for any 2 vector
$$
\overline{a}
$$
 subspace
\nV₁, V₂ \subset V.
\nwe have
\ndim (V₁+V₂) = dim V₁ + dim V₂ - dim (V₁N₂)
\nThus, dim (W_{λo}+U_{λo}) = dim W_{λo} + dim U_{λo}
\n $\frac{dim (Wλo)(Wλo)}{= 0$

- Thus
$$
W_{\lambda_{0}} + U_{\lambda_{0}} \subset V
$$

\nand $dim (W_{\lambda_{0}} + U_{\lambda_{0}}) = dim V$
\nHence $V = W_{\lambda_{0}} + U_{\lambda_{0}}$
\n $= W_{\lambda_{0}} \oplus U_{\lambda_{0}}$
\n $= W_{\lambda_{0}} \oplus U_{\lambda_{0}}$

Assume
$$
det(\lambda I-T) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_r)^{m_r}
$$

$$
Lemma: V = W_{\lambda_1} \oplus W_{\lambda_2} \oplus \cdots \oplus W_{\lambda_r}
$$

$$
\underline{Pf} : \qquad V = W_{\lambda_1} \oplus U_{\lambda_1} \qquad \text{by} \qquad \text{prev lemma.}
$$
\n
$$
W_{\lambda_2} = \ker((T - \lambda_1)^{N_1}), \qquad U_{\lambda_1} = \lim((T - \lambda_1)^{N_1})
$$
\n
$$
\underline{claim}: \qquad W_{\lambda_2}, \qquad \cdots, \qquad W_{\lambda_r} \qquad \qquad U_{\lambda_1}.
$$
\nindeed, \qquad \qquad \vdots \qquad \qquad \text{consider} \qquad \qquad T - \lambda_1 \cdot I \qquad \text{restricted} \qquad \text{to} \qquad W_{\lambda_2}

it presemes
$$
W_{\lambda_2}
$$
, And. How e W_{λ_2} ,
\n $(T - \lambda_1) V \approx 0$, $(\overline{f_1} T v = \lambda_1 V_1$, then
\n $(T - \lambda_2)^{N_2} V = (\lambda_1 - \lambda_2)^{N_2} \cdot V \approx 0$, courtation).
\nThus $T - \lambda_1 |_{W_{\lambda_2}}$ is invertible.
\n $(T - \lambda_1)^{N_1} |_{W_{\lambda_2}}$ is invertible.
\n $W_{\lambda_2} = (T - \lambda_1)^{N_1} (W_{\lambda_2}) \subset (T - \lambda_1)^{N_1} (V)$
\nThis claim shows $W_{\lambda_1} \cap W_{\lambda_2} = \{\overline{\sigma_3^2}\}$.
\nHence
\n $V = W_{\lambda_1} \oplus \cdots \oplus W_{\lambda_r} \oplus U$.
\n $U = U_{\lambda_1} \oplus \cdots \oplus W_{\lambda_r} \oplus U$.
\n $U = U_{\lambda_1} \oplus \cdots \oplus W_{\lambda_r} \oplus U$.
\n $U = U_{\lambda_1} \oplus \cdots \oplus U_{\lambda_r} \oplus U$.
\n $U = W_{\lambda_1} \oplus \cdots \oplus W_{\lambda_r} \oplus U$.
\n $U = \lambda_1 \oplus \lambda_2$, and $T : V \rightarrow V$
\npreserves V_1 and V_2 , then,
\n $\Delta_{\lambda_1} \oplus \cdots \oplus W_{\lambda_r}$ must λ_1 is
\n $W = V_1 \oplus V_2$, then $\overline{V_1} \oplus \cdots \oplus V$, adapted
\n $U = V_1 \oplus V_2$, then $\overline{V_1} \oplus \cdots \oplus V$
\n $U = \begin{bmatrix} V_1 & 0 \\ 0 & T_2 \end{bmatrix} V_1$
\n $U = \begin{bmatrix} V_1 & 0 \\ 0 & T_2 \end{bmatrix} V_2$
\n $U = \begin{bmatrix} V_1 & 0 \\$

$$
r = \sqrt{n_1} \qquad \qquad \sim \qquad \sim n_2
$$

$$
(\lambda - \lambda_{1}) \qquad (\lambda - \lambda_{2})
$$

\n
$$
char(T) = char(T|w_{\lambda_{1}}) \cdot char(T|w_{\lambda_{2}}) \cdot char(T|w_{\lambda_{r}})
$$

\n
$$
(\lambda - \lambda_{1})^{m_{1}} \cdot (\lambda - \lambda_{r})^{m_{r}} \qquad \qquad \text{else} \quad (T|u)
$$

\n
$$
(\lambda - \lambda_{1})^{m_{r}} \cdot \text{class no roots in}
$$

\n
$$
1.
$$

Thus
$$
U = \{0\}
$$
, $n_i = m_i$ #

$$
T - \lambda_i I
$$
 on $W\lambda_i$ is a nilpoleut operator.
i.e. $(T - \lambda_i I)^N = 0$ on $W\lambda_i$ for N large enough.

 N : $K^n \rightarrow K^n$, e_i , e_n be stal hasis $\cdot \overline{E}x$: $N(e_n) = e_{n-1}$, $N(e_{k}) = e_{k-1}$ \therefore N(e_4) = 0. $N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & \vdots & \ddots & 1 \end{pmatrix}$

such N satisfies
 $N^n = 0$, but $N^{n+1} \neq 0$
we call such operator on K^n a regular nilpotent operator.

 $N:$ $e_n \mapsto e_{n-1} \mapsto e_{n-2} \mapsto \cdots \mapsto e_1 \mapsto 0$

 $Prop:$ Let V be an n -dim $v.s.$ / $\mathbb{R}.$ Let $N: V \rightarrow V$ be a nilpotent op then there exist ^a decomposition $V = V_1 \oplus V_2 \oplus \cdots \oplus V_r$ such that $N|_{V_{k}}$ is a regular nilpotent op.

i.e. there exist
$$
\alpha
$$
 basis of $\sqrt{1}$, $s.t.$
\n $N = \begin{bmatrix} 0.1 \\ 0.0 \\ 0.1 \\ 0.0 \end{bmatrix}$ (1) 0 (1) of block diagonal from, where each diagonal to be determined by the equation α is regular independent.

 $PF: (method 1)$. Assume $N^m = 0$, $N^{m-1} \neq 0$. Then consider im (N^k) , If $V \in \text{Im}(N^k)$, then $v = N^k$ $(\tilde{v}) = N^{\tilde{J}} (N^{k-j} v)$ for any \tilde{s} k Thus $im (N^{j})$ \sup im (N^{k}) for any j k.

$$
V \supset \text{im}(N) \supset \text{im}(N^2) \supset \cdots \supset \text{im}(N^{m-1})
$$

$$
\sup_{n \in \mathbb{N}} \text{im}(N^m) = 0.
$$

We are going to construct ^a basis adapted to this flag, in the following sense.

$$
f_{\rm{max}}
$$

This way, we have a basis of
$$
V
$$
, compatible with the action of N .

Each column of basis vectors generate ^a sudd subspace Vi where N acts on Ui regular nilpotently

Jordan Normal Form Thm.

Let
$$
K = C
$$
, $V = C^n$.
\nLet $T: V \rightarrow V$.
\nThen, there exists a basis of V, such that
\n T is in block diagonal form, where each block
\nis $(\lambda, \lambda, \lambda)$
\n $(\lambda, \lambda, \lambda)$.

Pf: we first decompose
\n
$$
det(\lambda - T) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_r)^{m_r}
$$

\nand define most spaces $W\lambda_1$.
\nThen $(T - \lambda_1) = W\lambda_1$ is a $n!p$ operator
\nHence $W\lambda_1$ decomposes into.
\n $W\lambda_1$ ($\theta \cdots \theta W\lambda_1$
\n $W\lambda_1$ ($\theta \cdots \theta W\lambda_1$
\nwhere $T - \lambda_1$ acts on each block $reg \cdot n!p$.

 θ θ

and similarly for all roots spaces. $\therefore V = W_{\lambda_1}^{(1)} \oplus \cdots \oplus W_{\lambda_n}^{(n_1)} \oplus W_{\lambda_2}^{(1)} \oplus \cdots \oplus W_{\lambda_n}^{(1)} \oplus \cdots$