1. Existence and Uniqueness of sol'n.

Let $x_{1}(t), \cdots, x_{n}(t)$ be the unknown function. $\vec{x}(t)=\left(\begin{array}{c}x_{1}(t) \\ \vdots \\ x_{1}(t)\end{array}\right)$ Let $\left\{\begin{array}{c}\dot{x}_{1}(t)=F_{1}\left(t, x_{1}, \cdots, x_{n}\right) \\ \dot{x}_{2}(t)=F_{2}\left(t, x_{1}, \cdots, x_{n}\right) \\ \vdots \\ \dot{x}_{n}(t)=F_{n}\left(t, x_{1}, \cdots, x_{n}\right)\end{array}\right.$
be the equations.
The: Suppose $\left\{F_{i}(t, \vec{x})\right\}$ have continuous derivatives in t and x_{1}, \cdots, x_{n}, then for any initial condition at $t=t_{0}$, given by $\left(x_{1}\left(t_{0}\right), \cdots, x_{n}\left(t_{0}\right)\right)$, we have a small $\frac{0 \text { ten }}{\operatorname{seg} m e n t ~}\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ containing t, such that the soln $\vec{x}(t)$ exists for $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ that satisfies the eq \& initial condition. Such solon is unique.

Ex: a function that dies not have continous derivative:

- $f(x)=\frac{1}{x} \quad x \in(-\infty,+\infty)$.
function is not continuous at $x=0$

$$
\Rightarrow f^{\prime}(x) \text { doesnot exist at } x=0
$$

- $f(x)=|x|$

$$
\begin{array}{r}
\cdot f(x)=|x|^{\frac{1}{2}} \\
f^{\prime}(x)= \begin{cases}\frac{1}{2} \frac{1}{x} & x>0 \\
-\frac{1}{2} \frac{1}{x} & x<0 .\end{cases} \\
\cdot \underline{E x}:\left\{\begin{array}{l}
\dot{x}(t)=[x(t)]^{\frac{2}{3}} \\
x(0)=0
\end{array}\right.
\end{array}
$$

diff eq. initial condition
we have 2 sol.

$$
x(t)=0 \quad \forall t .
$$

or

$$
x(t)=\left(\frac{t}{3}\right)^{3} \quad \Rightarrow \quad \dot{x}(t)=\left(\frac{t}{3}\right)^{2}
$$

We don't have uniqueness here, since $F(t, x)=x^{2 / 3}$ doesn't have contimoons derivative at $x=0$.

Picture:
roll down the hill or stay there.
(2)

$$
\frac{d}{d t}\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right)=\underbrace{\left[\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
\vdots & a_{17} \\
\vdots & & \\
\vdots & \ldots & \vdots
\end{array}\right]}_{A}\left(\begin{array}{c}
x(t) \\
\vdots \\
x_{n}(t)
\end{array}\right)
$$

$\left\{a_{i i}\right\}$ are constants.
cons conf ${ }^{\text {chef is indef of } t} t$.

Homogeneous. First Order. Ordinary Diff Eq.
 term change by factor of 2 .

$$
\frac{d}{d t} \vec{x}(t)=A \cdot \vec{x}(t) \quad \vec{x}(t)=e^{A \cdot t} \cdot \vec{x}(0)
$$

Here, since A is an $n \times n$ matrix with constant clef.

$$
e^{x}=1+x+\frac{x^{2}}{2 \cdot 1}+\frac{x^{3}}{3 \cdot 2 \cdot 1}+\frac{x^{4}}{4!}+\cdots \cdot
$$

(this series converges for all $x \in \mathbb{C}$.).if each term has size that shrinks fast enough, then the total size is finite.

$$
e^{\downarrow} \cdot t \cdot I_{n}+A t+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\cdots
$$

- each term make seance $\because \frac{(A t)^{n}}{n!}=\frac{t^{n}}{n!} \cdot \underbrace{}_{\text {well defined }}$.

$$
\frac{d}{d t}\left(e^{A \cdot t}\right)=0+A+A^{2} \cdot t+A^{3} \cdot \frac{t^{2}}{2!}+\cdots
$$

$$
\begin{aligned}
& =A \cdot\left(I+A t+A^{2} \frac{t^{2}}{2!}+\cdots\right) \\
& =A \cdot e^{A t} \\
\Gamma_{\frac{d}{d t}} e^{\lambda t} & \left.=\lambda \cdot e^{\lambda t}\right]
\end{aligned}
$$

$$
\frac{d}{d t}(\underbrace{e^{A t}}_{\substack{\text { size non matrix }}})=A \cdot e^{A t} \text { then }
$$

size non matrix depends ont

$$
\begin{aligned}
& \quad \frac{d}{d t}(\underbrace{e^{A t} \cdot \vec{x}_{0}}_{\vec{x}(t)})=A \cdot \underbrace{e^{A t} \cdot \vec{x}_{0}}_{\vec{x}(t)} \\
& \Rightarrow \quad \frac{d}{c t} \vec{x}(t)=A \cdot \vec{x}(t)
\end{aligned}
$$

notation:
$e^{A t}$ is called the fundamental solon. Since, each column vector in $e^{A t}$ is a sol, the general solis

$$
\vec{x}(t)=e^{A t} \vec{x}_{0}
$$

is a linear comb. of the colon's

In practice, to do exponentiation of a matrix A, we want to diagonalize A first.

Recall Jordan Decomposition Thu:
Given $a \begin{aligned} & \text { square } \\ & \text { matrix }\end{aligned}$ over \mathbb{C} of size n., there exist an invertible matrix C, sit.

$$
A=C \cdot J \cdot C^{-1}
$$

where J is block diagonal, with each block $\sim\left(\begin{array}{cc}\lambda & 1 \\ \cdots & 0 \\ 0 & \cdots \\ \hline\end{array}\right)$

$$
\left.\begin{array}{rl}
A^{2} & =\left(C \cdot J C^{-1}\right) \cdot\left(C \cdot J \cdot C^{-1}\right) \\
& =C \cdot J \cdot J \cdot C^{-1}=C \cdot J^{2} \cdot C^{-1} \\
\vdots & A^{n}
\end{array}=\left(C \cdot J C^{-1}\right)\left(C J C^{-1}\right) \cdot \cdots \cdot C \cdot J C^{-1}\right) .
$$

Suffice to consider the case where A is of Jordan Suffice to consider one single Jordan block:
$\frac{\text { Jordan block size }}{1} \frac{J}{(\lambda)} J^{n} \lambda^{n} e^{J t}$ form.
$2 \quad\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)$. $\left(\begin{array}{cc}\lambda^{n} & n \cdot \lambda^{n-1} \\ 0 & \lambda^{n}\end{array}\right), e^{\lambda t}\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$

$$
\Gamma\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

$$
=\lambda \cdot I_{2}+N_{2}
$$

t regular nilpotent matrix of size 2 .
we know $I \cdot N=N \cdot I=N$.

$$
\begin{aligned}
\left(N_{2}\right)^{2} & =0 . \\
(\lambda I+N)^{2} & =\binom{\downarrow^{\text {omitting } I_{2}}}{(\lambda+N}^{2}=\lambda^{2}+2 \lambda N+N^{2} \\
& =\lambda^{2}+2 \lambda N \\
& =\left(\begin{array}{ll}
\lambda^{2} & 0 \\
0 & \lambda^{2}
\end{array}\right)+2 \lambda\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
\lambda^{2} & 2 \lambda \\
0 & \lambda^{2}
\end{array}\right) \\
(\lambda I+N)^{k} & =(\lambda+N)^{k}=\lambda^{k}+\binom{k}{1} \cdot \lambda^{k-1} \cdot N+\underbrace{\binom{k}{2} \lambda^{k-2} \cdot N^{2}+\cdots}_{=0} \begin{array}{c}
N^{2}=0 \\
N^{3}=0 \\
\vdots
\end{array} \\
& =\left(\begin{array}{ll}
\lambda^{k} & k \cdot \lambda^{k-1} \\
0 & \lambda^{k}
\end{array}\right) \\
e^{(\lambda+N) t} & =I+(\lambda+N) t+(\lambda+N)^{2} \cdot \frac{t^{2}}{2}+\cdots \cdots \\
e^{(\lambda t \cdot I)+(t \cdot N) .} & =e^{\lambda t \cdot I} \cdot e^{t N .}
\end{aligned}
$$

If A, B are 2 square matrices. and if $A B=B A$, then $e^{A+B}=e^{A} \cdot e^{B}$
\because if x, y are numbers.

$$
\begin{aligned}
e^{x} \cdot e^{y} & =\left(1+x+\frac{x^{2}}{2!}+\cdots\right)\left(1+y+\frac{y^{2}}{2!}+\cdots\right) \\
& =1+(x+y)+\frac{1}{2!}\left(x^{2}+y^{2}+2 x y\right)+\cdots \\
& =e^{x+y}
\end{aligned}
$$

the only property we use, is $x y=y x$.
Hence the same argument works for two commuting matrices. A.B.

$$
\begin{aligned}
& e^{t N}=1+t N+\underbrace{\frac{t^{2}}{2} N^{2}+\cdots}_{=0}=1+t N=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) \\
& e^{(\lambda+N) t}=e^{\lambda t} \cdot\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
\end{aligned}
$$

For $\left.\begin{array}{l}\text { size } m \\ J= \\ I_{m}\end{array} N_{m}=\left(\begin{array}{l}\lambda! \\ \ddots 1 \\ \\ \\ \lambda\end{array}\right)\right\}_{m}$

Ex: (damped pendulum.).
Eq

$$
\ddot{x}=\underbrace{-k x}_{\text {Hook's Law. }}-\underbrace{c \cdot \dot{x}}_{\text {resistance }}
$$

- First, we turn this to a last order diff eq. let $x_{1}(t)=x(t)$, then

$$
\begin{aligned}
& x_{2}(t)=\dot{x}_{1}(t) \\
& \frac{d}{d t}\binom{x_{1}}{x_{2}}=\binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{x_{2}}{\ddot{x}_{1}}=\binom{x_{2}}{-k x_{1}-c \cdot x_{2}} \\
&=\left(\begin{array}{cc}
0 & 1 \\
-k & -c
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& \frac{d}{d t}\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-k & -c
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& \Rightarrow \quad\binom{x_{1}(t)}{x_{2}(t)}=\underbrace{\text { ornatrix }}_{\text {evolution }} \\
& \begin{array}{l}
\text { or propagator. }
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
A=\left(\begin{array}{cc}
0 & 1 \\
-k & -c
\end{array}\right) & \text { Diagonalize }
\end{array} \quad A, \text { by }, ~ A=~ C \cdot J \cdot C^{-1}
$$

$$
A=C \cdot J \cdot C^{-1} .
$$

$$
0=\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\begin{array}{cc}
\lambda & -1 \\
k & \lambda+c
\end{array}\right)=\lambda(\lambda+c)+k=\underbrace{\lambda^{2}+c \lambda+k .}_{\pi} .
$$

$$
\ddot{x}+c \cdot \dot{x}+k x=0
$$

try $x=e^{\lambda t}$.

Solve $\quad \lambda^{2}+c \lambda+k=0, \quad \lambda^{2}+c \cdot \lambda+\left(\frac{c}{2}\right)^{2}=\left(\frac{c}{2}\right)^{2}-k$

$$
\left(\lambda+\frac{c}{2}\right)^{2}=\left(\frac{c}{2}\right)^{2}-k
$$

$$
\begin{aligned}
\lambda+\frac{c}{2} & = \pm \sqrt{\left(\frac{c^{2}}{2}\right)^{-k}} \\
\lambda_{ \pm} & =-\frac{c}{2} \pm \sqrt{\left(\frac{c}{2}\right)^{2}-k} .
\end{aligned}
$$

case 1: $\lambda_{ \pm}$are distinct real solon.
$\Leftrightarrow \quad R<\left(\frac{c}{2}\right)^{2} \quad$ (intuitively this means friction is)
 large

$$
\begin{aligned}
A & =C\left(\begin{array}{cc}
\lambda_{+} & 0 \\
0 & \lambda_{-}
\end{array}\right) C^{-1} \\
e^{A t} & =C \cdot\left(\begin{array}{cc}
e^{\lambda_{+} t} & 0 \\
0 & e^{\lambda_{-} t}
\end{array}\right) C^{-1} \\
\vec{x}(t) & =C \cdot\left(\begin{array}{ll}
e^{\lambda_{t} t} & 0 \\
0 & e^{\lambda_{-t}}
\end{array}\right) C^{-1}\binom{x_{1}(0)}{x_{2}(0)}
\end{aligned}
$$

case 2: $\lambda_{ \pm}$are a pair of complex conjugate

$$
\begin{aligned}
& \Leftrightarrow \quad k>\left(\frac{c}{2}\right)^{2} \text {. } \\
& \text { solus } \\
& \lambda_{ \pm}=-\rho_{ \pm i w} \\
& \omega=\sqrt{k-\left(\frac{c}{2}\right)^{2}} \\
& e^{(-p+i \omega) t}=e^{-p t}\left[e^{i \omega t}\right] \\
& =e^{-\rho t}[\cos (\omega t)+i \cdot \sin (\omega t)] \text {. } \\
& \binom{x_{1}(t)}{x_{2}(t)}=C\left(\begin{array}{ll}
e^{\lambda+t} & 0 \\
0 & e^{\lambda-t}
\end{array}\right) C^{-1}\binom{x_{1}(0)}{x_{2}(0)} \\
& \begin{aligned}
& \leadsto x(t)=x_{1}(t)=c_{1} \underbrace{e^{\mathbb{R}}} \sin (\omega t) \\
&=\alpha e^{-\rho t} c_{2}^{\mathbb{R}} \cdot e^{-\rho t} \cos (\omega t) \\
& e^{-\rho t} \cdot e^{\bar{\lambda}-t}
\end{aligned}
\end{aligned}
$$

case 3: $\quad \lambda_{+}=\lambda_{-}=-\frac{c}{2} . \quad R=\left(\frac{c}{2}\right)^{2}$.

$$
\begin{aligned}
& \begin{aligned}
J & \stackrel{?}{=}\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right) \quad \text { or } \quad J=\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \\
& \Rightarrow C \cdot J \cdot C^{-1}=J \neq A=\left(\begin{array}{c}
-\cdot-c)
\end{array}\right.
\end{aligned} \\
& A=C \cdot J \cdot C^{-1} \\
& e^{J t}=e^{[\lambda+(0 \%)] t}=e^{\lambda t} \cdot e^{(\% \prime) t}=e^{\lambda t}\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) \\
& \binom{x_{1}(t)}{x_{2}(t)}=C \cdot e^{J t} \cdot C^{-1}\binom{x_{1}(0)}{x_{n(-)}} \\
& x_{1}(t)=\underline{c_{1}} \cdot e^{\lambda t}+\underline{c_{2}} \cdot e^{\lambda t} \cdot t .
\end{aligned}
$$

$$
\ddot{x}+a_{1} \ddot{x}+a_{2} \cdot \dot{x}+a_{3} \cdot x=0
$$

3.6 .3 higher order

$$
\operatorname{det}(\lambda-A)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \cdots\left(\lambda-\lambda_{r}\right)^{m_{r}}
$$

$x(t) \quad$ is a linear combination of $\quad J=\left(\frac{\lambda_{1}, x_{i} \mid}{\substack{\lambda_{1} \lambda_{2} \\ \lambda_{2}}}\right)$

