Last time:
constant coif diff eq:

$$
\frac{d}{d t}\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right)=A \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)
$$

in short $\frac{d}{d t} \vec{x}(t)=A \cdot \vec{x}(t)$.
$n \times n$, constant
the solon

$$
\vec{x}(t)=e^{A t} \cdot \vec{x}(0)
$$

\uparrow a constant column vector
where exponential of a matrix is understood by its Taylor expansion: $\quad e^{M}=1+M+\frac{1}{2!} M^{2}+\frac{1}{3!} M^{3}+\cdots$

1. Boundary Condition I Initial condition.
2. Inhomogeneous Term.
3. $\quad \frac{d}{d t} \vec{x}=A \cdot \vec{x} \quad \vec{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ \dot{x}_{n}\end{array}\right)$.
the sol n space is an n-dimensional vector space.

$$
\vec{x}(t)=\underbrace{e^{A t}}_{\substack{n \times n \\
\text { matrix }}} \cdot\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

C_{i} are arbitrovy constant.
we can obtain an isomorphism between.
\mathbb{C}^{n} and the sol'n space.

$$
\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right) \longmapsto e^{A t} \cdot\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right) .
$$

i.e. we can use the column vectors in $e^{A t}$ as basis
of solis space.

To pin down the sol'n, we need to impose more constraints.

Ex: we may require that, at $t=t_{0}$, the solis

$$
\vec{x}\left(t_{0}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)
$$

This can be satisfied, by choosing $\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$,
We plug in the general sol'n to the constraints, we get

$$
e^{A \cdot t_{0}}\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \Leftrightarrow\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=e^{-A t_{0}\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) ~}
$$

recall that, if A, B commute $A B=B A$, then

$$
\begin{aligned}
& e^{A+B}=e^{A} \cdot e^{B}=e^{B} \cdot e^{A} \\
& e^{A} \cdot e^{-A}=e^{0}=I
\end{aligned}
$$

Ex: Eq: $\quad\left\{\begin{aligned} \ddot{x}(t) & =0 \\ x(0) & =1 \\ x(1) & =2 .\end{aligned}\right.$
gan soln $x(t)=a+b t$. $a \cdot b$ are fuse param.
plug in the gen sol'n to the constraint, we get

$$
\left\{\begin{array} { l }
{ a + b \cdot 0 = 1 } \\
{ a + b \cdot 1 = 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a=1 \\
b=1
\end{array}\right.\right.
$$

Ex: $\left\{\begin{array}{l}\ddot{x}(t)=-x(t) . \\ x(0)=0 \\ x(2 \pi)=1 .\end{array} \quad \Rightarrow x(t)=a \cdot \sin t+\right.$

$$
\left\{\begin{array} { l }
{ a \cdot \operatorname { s i n } (0) + b \cdot \operatorname { c o s } (0) = 0 } \\
{ a \cdot \operatorname { s i n } (2 \pi) + b \operatorname { c o s } (2 \pi) = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
b=0 \\
b=1 .
\end{array}\right.\right.
$$

no sol'n.

Inhomogeneous Equation:

Ex:

$$
\begin{aligned}
& x+y=0 \\
& \int \\
& \text { homogeneous eq. }
\end{aligned}
$$

 vector space.

Ex:

$$
x+y=1 \quad \xrightarrow{\text { sol }}
$$

soon is no longer a vector

For example. $(1,0)$ and $(0,1)$ are soling. space.
but $(1,0)+(0,1)=(1,1)$ is not a sol'n.

- If $\left(x_{0}, y_{0}\right)$ is a son to $x+y=1$.
and $\left(x_{1}, y_{1}\right)$ is a soln to $x+y=0$
then

$$
\begin{aligned}
& \quad\left(x_{0}+x_{1}, y_{0}+y_{1}\right) \text { is a soln }+x+y=1 . \\
& x_{0}+y_{0}=1 \Rightarrow\left(x_{0}+x_{1}\right)+\left(y_{0}+y_{1}\right)=1+0=1 . \\
& x_{1}+y_{1}=0
\end{aligned}
$$

In general: an inhonogeneors equations is of the form

$$
A \vec{x}=\vec{b}
$$

- there exists a soln if \vec{b} is in the range of A
- If \vec{x}_{0} satisfies $A \vec{x}=b$, and \vec{x}_{1} satisfies $A \vec{x}=0$, then $\quad \vec{x}_{D}+\vec{x}_{1}$ satisfies $A \vec{x}=b$. sol'n $\{A \vec{x}+b\}$, if not empty, then is an affine space modeled on the vector space So ln. $\{A \vec{x}=0\}$

Differential E_{q} :

$$
\frac{d}{d t} x(t)=\lambda \cdot x(t)+g(t)
$$

\uparrow a given function.
Let's rewrite the equation., introduce " D " $\frac{d}{d t}$.

$$
\begin{equation*}
(D-\lambda) \cdot x(t)=g(t) . \tag{*}
\end{equation*}
$$

a particular so.
If there exists a soln $x_{0}(t)^{k}$ for eq (*). then there exist many sola. , by adding to $x_{0}(t)$ a son of $(D-\lambda) x(t)=0$.
general sol'n $x(t)=x_{0}(t)+c \cdot e^{\lambda t .}$
τ c is free.

General strategy: to solve inhomog eq.

- Find a "particular sol'n" to the eq.
- Find a general sol'n to the homage eq.
- Add them up, to get the gen sol'n to the inhom. eq.

$$
D=\frac{d}{d t} \quad x(t)
$$

Ex: a $D \cdot x(t)=c$
$\Rightarrow x_{0}(t)=c \cdot t \quad$ is a particular so/ $/ \mathrm{h}$.
homogeneous
version
$D \cdot x(t)=0$
$\Rightarrow x_{1}(t)=c_{1}$ is a gen sol'n to
$x(t)=x_{0}(t)+x_{1}(t)=c_{1}+c t$. is a gen solon to $(*)$.

- $D \cdot x(t)=e^{\lambda t .}$
\longrightarrow particular sol'n

$$
x_{0}(t)=\frac{1}{\lambda} e^{\lambda t}
$$

\longrightarrow gen sol'n to the homage eq $D \cdot x(t)=0$

$$
x_{1}(t)=C_{0} .
$$

\rightarrow gen solon to the inhom eq.

$$
x_{0}(t)+x_{1}(t)=c_{0}+\frac{1}{\lambda} e^{\lambda t}
$$

$E_{x} \quad \cdot(D-\lambda) \cdot x(t)=g(t)$.

- suppose $\begin{array}{cc}g(t) & =e^{\lambda_{0} t} \\ \text { and } \lambda_{0} \neq \lambda . & \underbrace{b_{0}+b_{1} t+\cdots+b_{n} \cdot t^{n}}_{b(t)}) \text {. }\end{array}$
- we only find the parttalar solon here.
we first set

$$
x(t)=e^{\lambda t} \cdot u(t)
$$

then $(D-\lambda) \cdot\left(e^{\lambda t} \cdot u(t)\right)=e^{\lambda t} \cdot D \cdot u(t)$

$$
\begin{aligned}
& e^{\lambda t} \cdot D \cdot u(t)=e^{\lambda_{0} \cdot t} \cdot b(t) \text {. } \\
& D \cdot u(t)=e^{\left(\lambda_{0}-\lambda\right) t} \cdot b(t) \text {. } \\
& u(t)=\int^{t} e^{\left(\lambda_{0}-\lambda\right) \tilde{t}} \cdot b(\tilde{t}) d \tilde{t} . \\
& \begin{aligned}
x(t) & =e^{\lambda t} \cdot \int^{t} e^{\left(\lambda_{0}-\lambda\right) \tilde{t}} \cdot b(\tilde{F}) d \tilde{t} \\
& =e^{\lambda_{0} t} \cdot \widehat{P}_{n}(t) . \\
d t & =\frac{1}{\lambda} e^{\lambda t}+c . \quad\left[\begin{array}{c}
\overrightarrow{P_{n}^{\prime}(t)} \text { \& } b(t) \\
\text { of same } \\
\text { deg. }
\end{array}\right.
\end{aligned} \\
& \int e^{\lambda t} \cdot t \cdot d t=\int t \cdot d\left(\frac{e^{\lambda t}}{\lambda}\right)=t \cdot \frac{e^{\lambda t}}{\lambda}-\int \frac{e^{\lambda t}}{\lambda} d t \\
& =e^{\lambda t} \cdot \frac{t}{\lambda}-e^{\lambda t} \cdot \frac{1}{\lambda^{2}} \\
& =e^{\lambda t}\left(\frac{t}{\lambda}-\frac{1}{\lambda^{2}}\right) \\
& {\left[e^{\lambda t} \frac{t}{\lambda}-e^{\lambda t} \frac{1}{\lambda^{2}}\right]^{\prime}=\lambda \cdot e^{\lambda t} \cdot \frac{t}{\lambda}+e^{\lambda t} \cdot \frac{1}{\lambda}} \\
& -\lambda e^{\lambda t} \frac{1}{\lambda^{2}} \\
& =e^{\lambda t} \cdot t \text {. } \\
& \text { polynomial }
\end{aligned}
$$ of deg

In general, $\int e^{\lambda t} \cdot t^{n} \cdot d t=e^{\lambda t} \cdot P_{n}^{\downarrow}(t)$

If $\lambda=\lambda_{0}$ above.

$$
(D-\lambda) x(t)=e^{\lambda t} \cdot b(t)
$$

then. setfing $x(t)=e^{\lambda t} \cdot u(t)$,
we have

$$
\begin{aligned}
D \cdot u(t) & =b(t) . \\
u(t) & =\int b(t) d t \\
& =P(t)
\end{aligned}
$$

\uparrow polynomial of $\operatorname{deg} \sqrt{n+1}$
particular sol'n.
See Givental UDE book EX 3.7 .3 (b) (c).

