Diff Eq:
(i) $\quad \frac{d}{d t}\left(\begin{array}{c}x_{1}(t) \\ \vdots \\ x_{n}(t)\end{array}\right)=A \cdot\left(\begin{array}{c}x_{1}(t) \\ \vdots \\ x_{n}(t)\end{array}\right)$.

A: constant coeff matrix.
Solon: $\quad \vec{x}(t)=e^{A t} \cdot \vec{x}(0)$
where $e^{A t}=I_{n}+A t+\frac{1}{2!}(A t)^{2}+\frac{1}{3!}(A t)^{3}$
$\left[\begin{array}{l}\text { if } A=C^{-1} \cdot J \cdot C, \quad J \text { Jordan form } \\ \text { then } e^{A t}=C^{-1} \cdot e^{J t} \cdot C\end{array}\right.$
. in special case, if A is diagonalizable.

$$
\begin{aligned}
& J=\left(\begin{array}{llll}
\lambda_{1} & & \\
& \ddots & \lambda_{n}
\end{array}\right) \\
& e^{J t}=\left(\begin{array}{lll}
e^{\lambda_{1} t} & \\
& & \ddots
\end{array}\right. \\
& \\
& \\
&
\end{aligned}
$$

- $\vec{x}(0)$ contain n free parameters, $x(0), \cdots, x_{n}(0)$.
(2) Higher order const coeff equation: (Homig).

$$
\left(\frac{d}{d t}\right)^{n} x(t)+a_{1}\left(\frac{d}{d t}\right)^{n-1} x(t)+\cdots+a_{n-1} \frac{d}{d t} x(t)+a_{n} \cdot x(x)=0
$$

we introduce new unknown functions:

$$
\begin{aligned}
& x_{0}(t)=x(t) \\
& x_{1}(t)=\frac{d}{d t} x(t)
\end{aligned}
$$

$$
x_{n-1}(t)=\left(\frac{d}{d t}\right)^{n-1} x(t)
$$

These new functions satisfy

$$
\begin{aligned}
& \left(\frac{d}{d t}\right)\left(\begin{array}{c}
x_{0} \\
\vdots \\
x_{n-1}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\left(x_{(t)}\right)^{(n)}
\end{array}\right)^{(}=\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n-1}(t) \\
-a_{1} x_{n-1} \cdots-a_{n} \cdot x_{0}
\end{array}\right) \\
& =(\underbrace{\left(\begin{array}{ccccc}
0 & 1 & & & \\
\vdots & 0 & 1 & & \\
\vdots & \vdots & \ddots & 1 & \\
0 & 1 & & \ddots & \\
-a_{n} & -a_{n-1} & \cdots & \ddots & -a_{1}
\end{array}\right)}_{1}\left(\begin{array}{c}
x_{0} \\
\vdots \\
\vdots \\
\vdots \\
x_{n-1}
\end{array}\right) .
\end{aligned}
$$

this reduces to case (1).
the short way to solve this, is to find the characteristic polynomial:
try to slug in $x=e^{\lambda t \text {. }}$

$$
\text { get equation. }(\underbrace{\left.\lambda^{n}+a_{1} \cdot \lambda^{n-1}+\cdots+a_{n}\right) \cdot e^{\lambda t}=0}_{=\operatorname{det}(\lambda-A) \text {. }}
$$

$\partial_{t} U$, or $\partial t t u, \cdots$
(3). Solving PDE of type. $\Delta_{x} u(t, x)=\cdots$.

Heat: $\quad \partial_{t} U(t, x)=\partial_{x x} U(t, x)$.
we can use separation of variable to obtain.
"basis" of sol'n:

$$
u(t, x)=f(t) \cdot g(x)
$$

then

$$
\begin{aligned}
& \quad \partial_{t}(f(t) \cdot g(x))=\partial_{x x}(f(t) g(x)) . \\
& \Leftrightarrow \quad\left(\partial_{t} f\right) \cdot g=f \cdot \partial_{x x} g . \\
& \Leftarrow \quad \frac{\partial_{t} f(t)}{f(t)}=\frac{\partial x x g(x)}{g(x)}=\text { const. } \\
& \text { if } f \cdot g \neq 0 \\
& \Rightarrow \quad\left\{\begin{array}{l}
\partial_{t} f(t)=\lambda f(t) \quad f(t)=e^{\lambda t} f(0) . \\
\partial x x g(x)=\lambda \cdot g(x) \\
\mathbb{v} g(x)=e^{\sqrt{\lambda} t} \cdot c_{1}+e^{-\sqrt{\lambda} t} c_{2} .
\end{array}\right.
\end{aligned}
$$

