Math H54

Final

8 problems, 10 points each.

- (1) Decide which of the following subset is a vector space. 2 points each, no explanation needed.
 - (a) The solution set $\{x : Ax = 0\}$, where A is a matrix, and x is a column vector.
 - (b) The subset $\{(x, y) \in \mathbb{C}^2 \mid x^2 + y^2 = 0\}$
 - (c) The set of $n \times n$ matrices A where det A = 0.
 - (d) The solution to some homogeneous linear differential equation, with homogenous boundary conditions. e.g. $f_{xx} + f_t + f_{tt} = 0$, and f(x = 0, t) = 0.
 - (e) the set of linear operators $T: \mathbb{R}^2 \to \mathbb{R}^2$, such that T satisfies

$$T\begin{pmatrix}1\\0\end{pmatrix} \perp \begin{pmatrix}1\\0\end{pmatrix}$$

where \perp is with respect to the standard inner product on \mathbb{R}^2 .

- (2) Quick questions, no justification needed, 2 points each.
 - (a) For what values of c in \mathbb{C} is the matrix $\begin{pmatrix} 1 & c \\ 0 & 2 \end{pmatrix}$ diagonalizable? (b) For what values of c in \mathbb{C} is the matrix $\begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$ diagonalizable?
 - (c) What is the rank of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$? (bonus: what if

you change the matrix size to n?)

- (d) Can all degree 2 polynomials with \mathbb{C} coefficients be expressed as C-linear combinations of $x - 1, 2x - 1, 3x^2 + 1$? If you think so, express x^2 as a linear combination of them.
- (e) If a matrix A has characteristic polynomial $p(\lambda) = (\lambda 1)^2 (\lambda 1)^2$ 2), then is it true that A is not diagonalizable?
- (3) Use row reduction, or whatever method you prefer, and solve the following equation

$$\begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

(4) Consider the equation for u(x,t)

$$u_t = u_{xx} + 2u_x, \quad t > 0, x \in (0, 1)$$

a: (5pts) If u(x,t) = f(x)g(t) satisfies the equation, then what equations do f and q satisfy?

b: (5pts) If we further require that u(x,t) = 0 when x = 0 and x = 1, can you write down the general solution to the above equation?

(5) Find the fundamental solution for the equation

$$\frac{d}{dt}\vec{x}(t) = A\vec{x}(t), \quad A = \begin{pmatrix} 9 & -4\\ 9 & -3 \end{pmatrix}.$$

Namely, find a 2×2 matrix $\Psi(t)$ explicitly, such that $\frac{d}{dt}\Psi(t) = A\Psi(t)$ and $\Psi(0) = I$. You may use the following info

$$A\begin{pmatrix}2\\3\end{pmatrix} = 3\begin{pmatrix}2\\3\end{pmatrix}, \quad A\begin{pmatrix}3\\4\end{pmatrix} = 3\begin{pmatrix}3\\4\end{pmatrix} + \begin{pmatrix}2\\3\end{pmatrix}$$

(6) (a) (5 pts) Find an order 3 homogeneous differential equation about y(x), that is, an equation of the form

$$y'''(x) + a_1 y''(x) + a_2 y'(x) + a_3 y(x) = 0$$

such that $xe^x + e^{-x}$ is a solution.

(b) (5 pts) Find a particular solution to

$$y'(x) + y(x) = e^{-x}.$$

(7) Consider the function $f(x) = |\sin(x)|$ for $x \in [-\pi, \pi]$. Find its Fourier series on $(-\pi, \pi)$ in the form

$$\frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos(mx) + b_m \sin(mx).$$

Namely, compute all a_m, b_m . You may need the formula that

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$$

(8) Put the following matrix in Jordan normal form,

$$A = \begin{pmatrix} 1 & c & 0\\ 0 & 2 & 2\\ 0 & 0 & 2 \end{pmatrix}$$

that is, find invertible C, such that $A = CJC^{-1}$ where J Jordan form.

(For full credits, do the case where c = 1. For half credits (5 points), do the case where c = 0.)

 $\mathbf{2}$