8 problems, 10 points each.
(1) Decide which of the following subset is a vector space. 2 points each, no explanation needed.
(a) The solution set $\{x: A x=0\}$, where A is a matrix, and x is a column vector.
(b) The subset $\left\{(x, y) \in \mathbb{C}^{2} \mid x^{2}+y^{2}=0\right\}$
(c) The set of $n \times n$ matrices A where $\operatorname{det} A=0$.
(d) The solution to some homogeneous linear differential equation, with homogenous boundary conditions. e.g. $f_{x x}+f_{t}+f_{t t}=0$, and $f(x=0, t)=0$.
(e) the set of linear operators $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, such that T satisfies

$$
T\binom{1}{0} \perp\binom{1}{0}
$$

where \perp is with respect to the standard inner product on \mathbb{R}^{2}.
(2) Quick questions, no justification needed, 2 points each.
(a) For what values of c in \mathbb{C} is the matrix $\left(\begin{array}{ll}1 & c \\ 0 & 2\end{array}\right)$ diagonalizable?
(b) For what values of c in \mathbb{C} is the matrix $\left(\begin{array}{ll}1 & c \\ 0 & 1\end{array}\right)$ diagonalizable?
(c) What is the rank of the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$? (bonus: what if you change the matrix size to n ?)
(d) Can all degree 2 polynomials with \mathbb{C} coefficients be expressed as \mathbb{C}-linear combinations of $x-1,2 x-1,3 x^{2}+1$? If you think so, express x^{2} as a linear combination of them.
(e) If a matrix A has characteristic polynomial $p(\lambda)=(\lambda-1)^{2}(\lambda-$ $2)$, then is it true that A is not diagonalizable?
(3) Use row reduction, or whatever method you prefer, and solve the following equation

$$
\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

(4) Consider the equation for $u(x, t)$

$$
u_{t}=u_{x x}+2 u_{x}, \quad t>0, x \in(0,1)
$$

a: (5pts) If $u(x, t)=f(x) g(t)$ satisfies the equation, then what equations do f and g satisfy?
$\mathrm{b}:(5 \mathrm{pts})$ If we further require that $u(x, t)=0$ when $x=0$ and $x=1$, can you write down the general solution to the above equation?
(5) Find the fundamental solution for the equation

$$
\frac{d}{d t} \vec{x}(t)=A \vec{x}(t), \quad A=\left(\begin{array}{cc}
9 & -4 \\
9 & -3
\end{array}\right) .
$$

Namely, find a 2×2 matrix $\Psi(t)$ explicitly, such that $\frac{d}{d t} \Psi(t)=A \Psi(t)$ and $\Psi(0)=I$. You may use the following info

$$
A\binom{2}{3}=3\binom{2}{3}, \quad A\binom{3}{4}=3\binom{3}{4}+\binom{2}{3}
$$

(6) (a) (5 pts) Find an order 3 homogeneous differential equation about $y(x)$, that is, an equation of the form

$$
y^{\prime \prime \prime}(x)+a_{1} y^{\prime \prime}(x)+a_{2} y^{\prime}(x)+a_{3} y(x)=0
$$

such that $x e^{x}+e^{-x}$ is a solution.
(b) (5 pts) Find a particular solution to

$$
y^{\prime}(x)+y(x)=e^{-x}
$$

(7) Consider the function $f(x)=|\sin (x)|$ for $x \in[-\pi, \pi]$. Find its Fourier series on $(-\pi, \pi)$ in the form

$$
\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos (m x)+b_{m} \sin (m x)
$$

Namely, compute all a_{m}, b_{m}. You may need the formula that

$$
\sin (a) \cos (b)=\frac{1}{2}(\sin (a+b)+\sin (a-b))
$$

(8) Put the following matrix in Jordan normal form,

$$
A=\left(\begin{array}{lll}
1 & c & 0 \\
0 & 2 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

that is, find invertible C, such that $A=C J C^{-1}$ where J Jordan form.
(For full credits, do the case where $c=1$. For half credits (5 points), do the case where $c=0$.)

