Problem 1

Consider the vector $(5,3)$, expressed in the standard basis (i.e. $\{(1,0),(0,1)\})$. What are its coordinates with respect to the basis defined by $B=\{(1,1),(1,-1)\}$?

Solution

There are two appropriate methods to do this:

1. Write the coordinates of the new vector as (a, b) and solve the system of linear equations one gets by setting $(5,3)=a(1,1)+b(1,-1)$. In this case, one has $a+b=5, a-b=3$, from we get $(a, b)=(4,1)$.
2. The other method is recognize that the basis vector given are orthogonal, but not orthonormal. So, we can normalize them to have length 1 and use the result discussed at the end of the first lecture (For an orthonormal basis $\left\{e_{1}, e_{2}\right\}$, we have $v=\left\langle v, e_{1}\right\rangle e_{1}+\left\langle v, e_{2}\right\rangle e_{2}$). We normalize to get the basis $B^{\prime}=\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)\right\}$. The coordinates with respect to this orthonormal basis are

$$
(5,3) \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{8}{\sqrt{2}} \text { and }(5,3) \cdot\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\frac{2}{\sqrt{2}} .
$$

Since the basis B^{\prime} is composed of the same vectors as B scaled down by a factor of $\sqrt{2}$, when we switch back to B we must scale down the coordinates. We get that the new coordinates of $(5,3)$ are $\left(\frac{8}{\sqrt{2} \sqrt{2}}, \frac{2}{\sqrt{2} \sqrt{2}}\right)=(4,1)$.

Problem 2

Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is linear if $f(c x)=c f(x)$, and $f(x+y)=f(x)+f(y)$. Are the following functions linear:
a) $f(x)=2 x$,
b) $f(x)=x^{2}$,
c) $f(x)=x+2$?

Solution

1. Yes. $f(c x)=2(c x)=c \cdot 2 x=c f(x)$ and $f(x+y)=2(x+y)=2 x+2 y=f(x)+f(y)$.
2. No. $f(c x)=(c x)^{2}=c^{2} x^{2} \neq c f(x)=c x^{2}$ unless $c=0,1$, but this must hold for all c.
3. No. $f(c x)=c x+2 \neq c f(x)=c(x+2)$ unless $c=1$. Again, this must hold for all c. Indeed, $f(x+y)=x+y+2 \neq f(x)+f(y)=x+y+4$, so neither condition holds.

Problem 3

Let $A B C$ be a triangle. Is it true that there exists only one point M, such that $M A+M B+M C=0$? What if we change the condition to $2 M A+M B+M C=0$?

Solution

We wish to show that there exists a unique solution to $M A+M B+M C=0$. Let $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right)$, $C=\left(c_{1}, c_{2}\right)$ be fixed, and let $M=\left(m_{1}, m_{2}\right)$ be unknown. We can treat the x and y coordinates independently (but since they are symmetric we can do both at the same time):

$$
\left(m_{i}-a_{i}\right)+\left(m_{i}-b_{i}\right)+\left(m_{i}-c_{i}\right)=0
$$

hence

$$
m_{i}=\frac{1}{3}\left(a_{i}+b_{i}+c_{i}\right)
$$

is the unique solution. So, there exists a point $M=\left(m_{1}, m_{2}\right)=\frac{1}{3}\left(a_{1}+b_{1}+c_{1}, a_{2}+b_{2}+c_{2}\right)$, and it is unique since the equation has only one solution. Incidentally, this also proves that $M=\frac{1}{3}(A+B+C)$, which we can recognize as the barycenter of triangle $A B C$.
For the second problem, there are two approaches, the first is to reproduce a similar calculation as was done above. We'll prove it this way first: Setting the coordinates as before, we have

$$
2\left(m_{i}-a_{i}\right)+\left(m_{i}-b_{i}\right)+\left(m_{i}-c_{i}\right)=0
$$

hence

$$
m_{i}=\frac{2 a_{i}+b_{i}+c_{i}}{4}
$$

Again, a solution to the equation exists and is evidently unique (we shall make this notion of 'evidently unique' more precise in the future).
The second is to consider the triangle $A^{\prime} B C$, where A^{\prime} is the point along the median originating at A which is equidistant from M and the line $B C$ (i.e. the same triangle as before but 'push' the vertex A in a little closer). Then, by the previous part, we know that $M A+M B+M C=0$ has a unique solution for M, but by the definition of A^{\prime}, this is precisely the equation $2 M A^{\prime}+M B+M C=0$, so this equation also has a unique solution.

