Problem 1

Find a linear transformation which maps the unit circle to an ellipse with major and minor axes of lengths 5 and 3 , respectively. The major axis should align with the y-axis.

Solution

We wish to map the unit circle

$$
x^{2}+y^{2}=1
$$

to the ellipse

$$
\frac{x^{\prime 2}}{9}+\frac{y^{\prime 2}}{25}=1
$$

which can equivalently be expressed as

$$
\left(\frac{x^{\prime}}{3}\right)^{2}+\left(\frac{y^{\prime}}{5}\right)^{2}=1
$$

So, the transformation needed is $x=\frac{x^{\prime}}{3}$ and $y=\frac{y^{\prime}}{5}$. In terms of the basis vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, this is represented by the linear transformation

$$
T=\left[\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right]
$$

since $\left[\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 x \\ 5 y\end{array}\right]=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$.

Problem 2

Is there a linear transformation that takes the three points $(1,0),(1,1)$ and $(0,1)$ to $(2,0),(1,1),(0,2)$?

Solution

No such transformation exists. We proceed by contradiction. Suppose such a transformation T existed. Then,

$$
T(1,0)=(2,0)
$$

and

$$
T(0,1)=(0,2)
$$

Then, by linearity we must have

$$
T(1,1)=T((1,0)+(0,1))=(2,0)+(0,2)=(2,2),
$$

but $(2,2) \neq(1,1)$, so no such transformation exists.

Problem 3

Let

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Compute A^{2}, A^{-1} and $A+B$ where

$$
B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Solution

$$
A^{2}=A \cdot A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
(1+1) & (1-1) \\
(1-1) & (1-(-1))
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

For A^{-1} we can apply the formula for the inverse of a 2×2 matrix, or we can notice that since $A^{2}=2 \mathbb{I}$, then $A \cdot \frac{1}{2} A=\mathbb{I}$ and hence $\frac{1}{2} A=A^{-1}$; i.e.

$$
\begin{gathered}
A^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right] \\
A+B=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
4 & 3
\end{array}\right]
\end{gathered}
$$

