Problem 1

Compute
a) $(3+4 i) \cdot(1-2 i)$,
b) $e^{i 2 \pi / 3}+e^{-i 2 \pi / 3}$,
c) the argument of $\frac{(1+i)^{3}}{1-i}$.

Solution

Problem 2

Sketch the region

$$
\mathfrak{R}\left(z^{2}\right)=1
$$

and argue why the region sketched is correct.

Solution

Problem 3

Compute $(1+i)^{n}+(1-i)^{n}$ in terms of cosine. For what n is this quantity zero?
Hint: It may be useful to recall that any complex number $z \in \mathbb{C}$ can be expressed as $z=r e^{i \theta}$ for suitable r, θ.
You may also need to recall Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$.
Solution

