Problem 1

Compute

- a) $(3+4i) \cdot (1-2i)$,
- b) $e^{i2\pi/3} + e^{-i2\pi/3}$,
- c) the argument of $\frac{(1+i)^3}{1-i}$.

Solution

Problem 2

Sketch the region

$$\Re(z^2) = 1$$

and argue why the region sketched is correct.

Solution

Problem 3

Compute $(1+i)^n + (1-i)^n$ in terms of cosine. For what n is this quantity zero?

Hint: It may be useful to recall that any complex number $z \in \mathbb{C}$ can be expressed as $z = re^{i\theta}$ for suitable r, θ . You may also need to recall Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$.

Solution