Problem 1

Compute
a) $(3+4 i) \cdot(1-2 i)$,
b) $e^{i 2 \pi / 3}+e^{-i 2 \pi / 3}$,
c) the argument of $\frac{(1+i)^{3}}{1-i}$.

Solution

a) $(3+4 i) \cdot(1-2 i)=3-6 i+4 i-8 i^{2}=11-2 i$
b) $e^{i 2 \pi / 3}+e^{-i 2 \pi / 3}=2 \cos (2 \pi / 3)=-1$
c) Note $1+i=\sqrt{2} e^{i \pi / 4}$ and $1-i=\sqrt{2} e^{-i \pi / 4}$, so

$$
\frac{(1+i)^{3}}{1-i}=2 e^{-i \pi}
$$

so the argument is $-\pi$.

Problem 2

Sketch the region

$$
\mathfrak{R}\left(z^{2}\right)=1
$$

and argue why the region sketched is correct.

Solution

Write $z=x+i y$. Then, $z^{2}=(x+i y)(x+i y)=x^{2}=2 i x y-y^{2}$. Hence, $\mathfrak{R}\left(z^{2}\right)=x^{2}-y^{2}=1$. So, the region is a hyperbola.

Problem 3

Compute $(1+i)^{n}+(1-i)^{n}$ in terms of cosine. For what n is this quantity zero?
Hint: It may be useful to recall that any complex number $z \in \mathbb{C}$ can be expressed as $z=r e^{i \theta}$ for suitable r, θ. You may also need to recall Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$.

Solution

Note that $1+i=\sqrt{2} e^{i \pi / 4}$ and $1-i=\sqrt{2} e^{-i \pi / 4}$. Hence,

$$
(1+i)^{n}+(1-i)^{n}=\sqrt{2}^{n}\left(e^{i n \pi / 4}+e^{-i n \pi / 4}\right)=\sqrt{2}^{n} \cdot 2 \cos (n \pi / 4)
$$

This is zero when $n \frac{\pi}{4}=k \pi+\frac{\pi}{2}$ for any $k \in \mathbb{Z}$; i.e. $n=4 k+2$.

