Quiz #3

Problem 1

Compute

- a) $(3+4i) \cdot (1-2i)$,
- b) $e^{i2\pi/3} + e^{-i2\pi/3}$,
- c) the argument of $\frac{(1+i)^3}{1-i}$.

Solution

- a) $(3+4i) \cdot (1-2i) = 3 6i + 4i 8i^2 = 11 2i$
- b) $e^{i2\pi/3} + e^{-i2\pi/3} = 2\cos(2\pi/3) = -1$
- c) Note $1 + i = \sqrt{2}e^{i\pi/4}$ and $1 i = \sqrt{2}e^{-i\pi/4}$, so

$$\frac{(1+i)^3}{1-i} = 2e^{-i\pi}$$

so the argument is $-\pi$.

Problem 2

Sketch the region

$$\Re(z^2) = 1$$

and argue why the region sketched is correct.

Solution

Write z = x + iy. Then, $z^2 = (x + iy)(x + iy) = x^2 = 2ixy - y^2$. Hence, $\Re(z^2) = x^2 - y^2 = 1$. So, the region is a hyperbola.

Problem 3

Compute $(1+i)^n + (1-i)^n$ in terms of cosine. For what n is this quantity zero? Hint: It may be useful to recall that any complex number $z \in \mathbb{C}$ can be expressed as $z = re^{i\theta}$ for suitable r, θ . You may also need to recall Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$.

Quiz #3

Solution

Note that $1 + i = \sqrt{2}e^{i\pi/4}$ and $1 - i = \sqrt{2}e^{-i\pi/4}$. Hence,

$$(1+i)^n + (1-i)^n = \sqrt{2}^n (e^{in\pi/4} + e^{-in\pi/4}) = \sqrt{2}^n \cdot 2\cos(n\pi/4).$$

This is zero when $n\frac{\pi}{4} = k\pi + \frac{\pi}{2}$ for any $k \in \mathbb{Z}$; i.e. n = 4k + 2.