Problem 1

Compute the sign of the permutation $\sigma=(3214)$ by first computing the length. Compute its inverse.

Solution

Let $\ell(\sigma)$ be the length of the permutation. Then the sign is $\varepsilon(\sigma)=(-1)^{\ell(\sigma)}$. We can find the length by counting the number of crossing in the graph:

Since there are 3 crossings, $\ell(\sigma)=3$. Hence, $\varepsilon(\sigma)=-1$. Note that σ keeps 2 and 4 fixed and just swaps 1 and 3. Hence, $\sigma^{2}=\mathrm{id}$ and so $\sigma^{-1}=\sigma$; i.e. σ is its own inverse.

Problem 2

Compute the determinant of the following matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 1 & 0
\end{array}\right]
$$

Solution

$$
\begin{aligned}
\operatorname{det}(A) & =1 \cdot\left|\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right|-0 \cdot\left|\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right|+2 \cdot\left|\begin{array}{cc}
0 & 2 \\
2 & 1
\end{array}\right| \\
& =-1-8=-9
\end{aligned}
$$

Problem 3

Compute the determinant of the following matrix

$$
B=\left[\begin{array}{ccc}
1-\lambda & 0 & 2 \\
0 & 2-\lambda & 1 \\
2 & 1 & -\lambda
\end{array}\right]
$$

Solution

$$
\begin{aligned}
\operatorname{det}(B) & =(1-\lambda) \cdot\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & -\lambda
\end{array}\right|-0 \cdot\left|\begin{array}{cc}
0 & 1 \\
2 & -\lambda
\end{array}\right|+2 \cdot\left|\begin{array}{cc}
0 & 2-\lambda \\
2 & 1
\end{array}\right| \\
& =(1-\lambda)((2-\lambda)(-\lambda)-1)+2(-(2-\lambda) 2) \\
& =-\lambda^{3}+3 \lambda^{2}+3 \lambda-9
\end{aligned}
$$

