Problem 1

Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that the area of the parallelogram defined by $T(0,1)$ and $T(1,0)$ is $\frac{1}{2}$.
Bonus: (5pts) Using your solution to the first part or otherwise, find a family of linear transformations with this property.

Solution

There are many possible solutions here, the most straightforward of these is

$$
T=\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right]
$$

Then, $T(1,0)=(1,0)$ and $T(0,1)=\left(0, \frac{1}{2}\right)$. The parallelogram defined by $(1,0)$ and $\left(0, \frac{1}{2}\right)$ is just a rectangle with base 1 and height $\frac{1}{2}$. Hence, its area is $\frac{1}{2}$.
Bonus: In general, any matrix with determinant $\pm \frac{1}{2}$ will make the area of the resulting parallelogram equal to $\frac{1}{2}$. If you used this fact but didn't prove it, then you were given only 3 bonus points. Full points were awarded for constructing a family of transformations for which it is self-evident that each member has this property or it was proven that each member has the property. Some examples of families for which it is self-evident are

$$
T_{\theta}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right] \quad T_{n}=\left[\begin{array}{cc}
n & 0 \\
0 & \frac{1}{2 n}
\end{array}\right]
$$

In the first case, T_{θ} maps the standard basis vectors to the rectangle above, then simply rotates the rectangle, obviously preserving the area. In the second case, the parallelogram is a rectangle with width n and height $\frac{1}{2 n}$.

Problem 2

Compute the determinant of the following $(n+m) \times(n+m)$ matrix

$$
M=\left[\begin{array}{ll}
0 & A \\
B & C
\end{array}\right]
$$

where A is an $n \times n$ matrix and B is $m \times m$.

Solution

We use the fact that the determinant of an upper-triangle block matrix is the product of the determinants of the diagonal block matrices. Note, however, that the zero matrix in the upper-left and C in the bottom-right are not square matrices and hence do not have a determinant. Only A and B have a determinant. Hence, we have to swap rows/columns so that A and B lie on the diagonal. Note that if move the bottom m rows to the top, then the resulting matrix is

$$
M^{\prime}=\left[\begin{array}{ll}
B & C \\
0 & A
\end{array}\right]
$$

which has determinant $\operatorname{det}(B) \operatorname{det}(A)$. So,

$$
\operatorname{det}(M)=(-1)^{k} \operatorname{det}(B) \operatorname{det}(A)
$$

where k is the number of row swaps needed to get to M^{\prime}. Denote the rows of M by $r_{1}, \ldots, r_{n}, r_{n+1}, \ldots, r_{n+m}$. For $i \geq n+1$ takes n transpositions to move r_{i} into position r_{i-n} by doing n 'upwards' transpositions (swapping with the row directly above). Applying these n transpositions for each of the m bottom rows of M yields the matrix M^{\prime}. Hence,

$$
\operatorname{det}(M)=(-1)^{n m} \operatorname{det}(B) \operatorname{det}(A)
$$

Problem 3

Compute the determinant of the following matrix

$$
A_{n}=\left[\begin{array}{ccccc}
\lambda & -1 & 0 & \ldots & 0 \\
0 & \lambda & -1 & \ldots & 0 \\
\vdots & \ldots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda & -1 \\
a_{n} & a_{n-1} & \ldots & a_{2} & \lambda+a_{1}
\end{array}\right]
$$

Hint: Use induction.

Solution

Following the hint, we consider induction on n. Computing the determinant for $n=1,2,3$, we observe the pattern (defining $a_{0}=1$)

$$
\operatorname{det}\left(A_{n}\right)=\sum_{i=0}^{n} \lambda^{n-i} a_{i}
$$

Base Case $n=1$: In this case, A_{1} is the 1×1 matrix $\lambda+a_{1}$, so the determinant is obviously $\lambda+a_{1}$. This agrees with the formula $\sum_{i=0}^{1} \lambda^{1-i} a_{i}=\lambda+a_{1}$.
Inductive Step: Assume that the formula holds for some $n-1$, we show it holds for n. We compute the determinant using cofactor expansion along the first column. So,

$$
\begin{aligned}
\operatorname{det}\left(A_{n}\right) & =\lambda \operatorname{det}\left(A_{n-1}\right)+(-1)^{n-1} a_{n} \operatorname{det}\left[\begin{array}{cccc}
-1 & 0 & \ldots & 0 \\
\lambda & -1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & \lambda & -1
\end{array}\right] \\
& =\lambda\left(\sum_{i=0}^{n-1} \lambda^{n-1-i} a_{i}\right)+a_{n} \\
& =\sum_{i=0}^{n-1} \lambda^{n-i} a_{i}+a_{n} \\
& =\sum_{i=0}^{n} \lambda^{n-i} a_{i}
\end{aligned}
$$

where the second equality follows by the induction hypothesis and from the fact that

$$
\left[\begin{array}{cccc}
-1 & 0 & \ldots & 0 \\
\lambda & -1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & \lambda & -1
\end{array}\right]
$$

is a lower-triangular matrix of size $(n-1) \times(n-1)$ with -1 's along the diagonal, so its determinant is $(-1)^{n-1}$.

