Problem 1

Prove the Rank-Nullity Theorem: If U and V are vector spaces and $T: U \rightarrow V$, then

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{im}(T))+\operatorname{dim}(\operatorname{ker}(T))=r k(T)+\mathcal{N}(T)
$$

You may use the Rank Theorem: A linear map $T: U \rightarrow V$ of rank r between two vector spaces of dimensions n and m is given by the matrix $E_{r}=\left[\begin{array}{cc}\mathbb{I}_{r} & 0 \\ 0 & 0\end{array}\right]$ in suitable bases of U and V.

Solution

Problem 2

Let U and V be finite dimensional vector spaces over a scalar field \mathbb{K}. Prove that if $\operatorname{dim}(U)>\operatorname{dim}(V)$, then any linear transformation $T: U \rightarrow V$ is not injective.

Solution

Problem 3

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a non-zero linear transformation. Prove the following
a The nullity of T is $n-1$.
b If $B=\left\{v_{1}, \ldots, v_{n-1}\right\}$ is a basis for $\mathcal{N}(T)$ and $w \notin \mathcal{N}(T)$, then $B^{\prime}=\left\{v_{1}, \ldots, v_{n-1}, w\right\}$ is a basis of \mathbb{R}^{n}.
c Each vector $u \in \mathbb{R}^{n}$ can be expressed as

$$
u=v+\frac{T(u)}{T(w)} w
$$

for some $v \in \mathcal{N}(T)$.

Solution

