Problem 1

Prove the Rank-Nullity Theorem: If U and V are vector spaces and $T: U \rightarrow V$, then

$$
\operatorname{dim}(U)=\operatorname{dim}(\operatorname{im}(T))+\operatorname{dim}(\operatorname{ker}(T))=r k(T)+\mathcal{N}(T)
$$

You may use the Rank Theorem: A linear map $T: U \rightarrow V$ of rank r between two vector spaces of dimensions n and m is given by the $m \times n$ matrix $E_{r}=\left[\begin{array}{cc}\mathbb{I}_{r} & 0 \\ 0 & 0\end{array}\right]$ in suitable bases of U and V.

Solution

Let $T: U \rightarrow V$ be a linear map of rank r and by the Rank Theorem, pick suitable bases of U, V such that the matrix of T in those bases is given by E_{r}. Recall that $\operatorname{ker}(T)=\{x \in U: T x=0\}$. Note that any vector $v \in U$ which has its first r components equal to zero will map to $0 \in V$ under T. Also, any vector which is nonzero in one of the first r component is not mapped to 0 under T. Hence, the kernel of T is exactly the set of vectors which are zero in all of the first r components. A basis for the kernel of T is hence $\left\{e_{r+1}, e_{r+2}, \ldots, e_{n}\right\}$ where e_{i} denotes the vector with a 1 in the $i^{t h}$ component and elsewhere. So, $\operatorname{dim}(\operatorname{ker}(T))=n-r$. Since $\operatorname{dim}(U)=n$, it only remains to prove that $\operatorname{dim}(\operatorname{im}(T))=r$. This follows since $\left\{T e_{1}, T e_{2}, \ldots, T e_{r}\right\}$ is a basis for the image of T, as $T e_{r+1}, T e_{r+2}, \ldots, T e_{n}$ are all zero.

Problem 2

Let U and V be finite dimensional vector spaces over a scalar field \mathbb{K}. Prove that if $\operatorname{dim}(U)>\operatorname{dim}(V)$, then any linear transformation $T: U \rightarrow V$ is not injective.

Solution

By the Rank-Nullity Theorem,

$$
\operatorname{dim}(U)=\operatorname{dim}(\operatorname{im}(T))+\operatorname{dim}(\operatorname{ker}(T))
$$

and note that $\operatorname{dim}(\operatorname{im}(T)) \leq \operatorname{dim}(V)$. Hence, $\operatorname{dim}(\operatorname{ker}(T))>0$ so some nonzero vector $x \in U$ maps to zero under T. Hence, T is not injective.

Problem 3

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a non-zero linear transformation. Prove the following
a) The nullity of T is $n-1$.
b) If $B=\left\{v_{1}, \ldots, v_{n-1}\right\}$ is a basis for $\mathcal{N}(T)$ and $w \notin \mathcal{N}(T)$, then $B^{\prime}=\left\{v_{1}, \ldots, v_{n-1}, w\right\}$ is a basis of \mathbb{R}^{n}.
c) Each vector $u \in \mathbb{R}^{n}$ can be expressed as

$$
u=v+\frac{T(u)}{T(w)} w
$$

for some $v \in \mathcal{N}(T)$.

Solution

a) By the Rank-Nullity Theorem,

$$
\operatorname{dim}\left(\mathbb{R}^{n}\right)=\operatorname{dim}(\operatorname{im}(T))+\operatorname{dim}(\operatorname{ker}(T))
$$

Since T is nonzero, $\operatorname{dim}(\operatorname{im}(T))=1$ and obviously $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$. Hence, $\operatorname{dim}(\operatorname{ker}(T))=n-1$, as desired.
b) It suffices to prove that w is linearly independent from the basis B, since then B^{\prime} is a set of n linearly independent vectors in \mathbb{R}^{n}, so it is a basis for \mathbb{R}^{n}. Suppose that the set B^{\prime} is not a linearly independent set. Hence, there exists coefficients $c_{1}, \ldots, c_{n-1}, c_{n}$ such that

$$
c_{1} v_{1}+\cdots+c_{n-1} v_{n-1}+c_{n} w=0
$$

But then,

$$
w=-\frac{1}{c_{n}}\left(c_{1} v_{1}+\cdots+c_{n-1} v_{n-1}\right)
$$

so w can be expressed as a linear combination of elements of B, implying that $w \in \mathcal{N}(T)$, a contradiction.
c) Since B^{\prime} is a basis for \mathbb{R}^{n}, we can express any $u \in \mathbb{R}^{n}$ as

$$
u=c_{1} v_{1}+\cdots+c_{n-1} v_{n-1}+c_{n} w
$$

for suitable coefficients c_{1}, \ldots, c_{n}. Denote

$$
v=c_{1} v_{1}+\cdots+c_{n-1} v_{n-1}
$$

so that

$$
u=v+c_{n} w
$$

where $v \in \mathcal{N}(T)$ since it is a linear combination of basis vectors for $\mathcal{N}(T)$. It remains to prove that $c_{n}=\frac{T(u)}{T(w)}$. Since $u=v+c_{n} w$, we have that

$$
\begin{aligned}
T(u) & =T\left(v+c_{n} w\right) \\
& =T(v)+c_{n} T(w) \\
& =c_{n} T(w)
\end{aligned}
$$

since $T(v)=0$. Hence, $c_{n}=\frac{T(u)}{T(w)}$, as desired.

