Name:

\qquad
I_{n} denote the identity matrix of size $n . S_{n}$ is the set of permutations of n elements. For any prime p, we let $\mathbb{F}_{p}=\mathbb{Z} /(p)$ denote the finite field of p elements. Bonus questions do not count into points.

1. (50 pts, 10 points each) True or False, please justify your answers.
(a) There exists a linear transformation of \mathbb{R}^{2}, that takes the conic curve $x^{2}-y^{2}=1$ to $x^{2}+y^{2}=1$. (bonus: what if we change \mathbb{R} to $\mathbb{F}_{5} ? \mathbb{F}_{p}$?.)
(b) For any $\sigma_{1}, \sigma_{2} \in S_{n}$, we have $l\left(\sigma_{1} \circ \sigma_{2}\right)=l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right)$.
(c) The 3 vectors $(1,1,0),(2,3,0),(4,5,0)$ in \mathbb{R}^{3} are linearly independent.
(d) If A is an $n \times n$ matrix with determinant 1 and integer entries, then A^{-1} also has integer entries.
(e) If $z \in \mathbb{C}$ satisfies that $\bar{z}^{2}=1 / z^{3}$, then $|z|=1$.
2. (50 points, 10 points each)
(a)

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{3}=?
$$

(b)

$$
\operatorname{det}\left(\begin{array}{lll}
0 & e & d \\
a & b & 0 \\
g & 0 & f
\end{array}\right)=?
$$

(c) Let $T: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ be the linear map of taking the derivative,

$$
T(f(x))=f^{\prime}(x)
$$

Is T surjective? Is T injective? (bonus: what if we change \mathbb{R} to \mathbb{F}_{5} ? or \mathbb{F}_{p} ? can you write down $\operatorname{ker}(T), i m(T)$?)
(d) Let $V=\operatorname{Map}(\mathbb{R}, \mathbb{R})$ be the linear space of all functions on \mathbb{R} and let $T: V \rightarrow \mathbb{R}$ be a linear map. Suppose we know that,

$$
T(\sin (x))=1, \quad T(\cos (x))=3
$$

then for any given $\theta \in \mathbb{R}$,

$$
T(\sin (x+\theta))=?
$$

You may use $\sin (a+b)=\sin (a) \cos (b)+\sin (b) \cos (a)$.
(e) Let p be any prime (if you wish, you can let $p=11$), let $S=\{(x, y, z) \in$ $\left.\mathbb{F}_{p}^{3} \mid 2 x+3 y+5 z=1\right\}$. Is S a linear subspace of \mathbb{F}_{p}^{3} ? What is the size of S ?

