Math 54	Midterm 1	Oct 5, 2022
Name:		

 I_n denote the identity matrix of size n. S_n is the set of permutations of n elements. For any prime p, we let $\mathbb{F}_p = \mathbb{Z}/(p)$ denote the finite field of p elements. Bonus questions do not count into points.

1. (50 pts, 10 points each) True or False, please justify your answers.

- (a) There exists a linear transformation of \mathbb{R}^2 , that takes the conic curve $x^2 y^2 = 1$ to $x^2 + y^2 = 1$. (bonus: what if we change \mathbb{R} to \mathbb{F}_5 ? \mathbb{F}_p ?.)
- F (b) For any $\sigma_1, \sigma_2 \in S_n$, we have $l(\sigma_1 \circ \sigma_2) = l(\sigma_1) + l(\sigma_2)$.
- \mathbf{r} (c) The 3 vectors (1,1,0), (2,3,0), (4,5,0) in \mathbb{R}^3 are linearly independent.
 - (d) If A is an $n\times n$ matrix with determinant 1 and integer entries, then A^{-1} also has integer entries.

T (e) If $z \in \mathbb{C}$ satisfies that $\bar{z}^2 = 1/z^3$, then |z| = 1. take modulus on both sides.

- 2. (50 points, 10 points each)
 - (a)

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^3 = ? \qquad \begin{pmatrix} \mathbf{1} & \mathbf{3} \\ \mathbf{0} & \mathbf{i} \end{pmatrix}$$

(b)

t

$$\det \begin{pmatrix} 0 & e & d \\ a & b & 0 \\ g & 0 & f \end{pmatrix} = ? \quad -aef - gbd.$$

(c) Let $T : \mathbb{R}[x] \to \mathbb{R}[x]$ be the linear map of taking the derivative,

$$T(f(x)) = f'(x).$$
 not injective

surjective V

T(1) = 0

T const

function

Is T surjective? Is T injective? (bonus: what if we change \mathbb{R} to \mathbb{F}_5 ? or \mathbb{F}_p ? can you write down ker(T), im(T)?)

(d) Let $V = Map(\mathbb{R}, \mathbb{R})$ be the linear space of all functions on \mathbb{R} and let $T: V \to \mathbb{R}$ be a linear map. Suppose we know that,

$$T(\sin(x)) = 1, \quad T(\cos(x)) = 3$$

hen for any given
$$\theta \in \mathbb{R}$$
,

$$T(\sin(x+\theta)) =? = \cos\theta + \cos x \cdot \sin\theta$$

You may use $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$.

(e) Let p be any prime (if you wish, you can let p = 11), let $S = \{(x, y, z) \in \mathbb{F}_p^3 \mid 2x + 3y + 5z = 1\}$. Is S a linear subspace of \mathbb{F}_p^3 ? What is the size of S? **NO**

1

one can choose Saypts, X,y freedy in Fp then Z is determined, since 5 is invertible in Fp. . say P=5, do the same thing for YiZ. then x is determined.

$$1(a): False . \qquad \chi^2 - y^2 = 1 \quad is a hyperbola.) (\chi^2 + y^2 = 1 \quad is a circle 0.anyA linear transformation can shear, flip, stretch theplane, So, it can not move one to another.$$

1(b) False. For example, let
$$n = 12$$
, $\sigma_1 = \binom{12}{21}$, $\sigma_2 = \binom{12}{21}$
 $\sigma_1 \circ \sigma_2 = \binom{12}{12}$, $\lfloor (\sigma_1 \circ \sigma_2) = 0$, $\lfloor (\sigma_1) = \lfloor (\sigma_2) = \rfloor$
 $0 \neq 1 + \lfloor$.
Graphically $\int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_1} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_1} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_1} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_1} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_1} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_2}^{\sigma_1} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_1}^{\sigma_2} \int_{\sigma_1}^$

1(c). False. Span of the 3 vectors is contained
in the Z-plane
$$f(x,y,z)|_{Z=-\overline{S}}$$
, which
is 2-dimensional. 3 vectors in 2 dimension
space have to be linearly dependent.
(no need to find the actual linear combination
to show linear dependence.)
1(d). True. $(A^{-1})_{ij} = \frac{1}{\det A} \cdot C_{ji} = C_{ji}$
Cji is the co-factor. If A is an integen
matrix, then any cofactor Cij $\in \mathbb{Z}$.

$$|(e) \text{ True.} \text{ This one is best solved by}$$

$$applying the absolute sign |\cdot| \text{ on both sides.}$$

$$|\overline{Z}^2| = |\frac{1}{Z^3}|$$

$$but |\overline{Z}^2| = |\overline{Z}|^2 = |\overline{Z}|^2, \quad |\frac{1}{Z^3}| = \frac{1}{|\overline{Z}|^3}$$
Hence
$$|\overline{Z}|^2 = \frac{1}{|\overline{Z}|^3} \Rightarrow |\overline{Z}|^5 = |$$
Since $|\overline{Z}| = 70$ i. $|\overline{Z}| = |$ is the only possibility.

Q. (a),
$$\begin{pmatrix} 13\\ 01 \end{pmatrix}$$
 most people
(b) -aef-gbd J get these 2
correct.

- (c). T is surjective. To show this, let's fix a basis of $\mathbb{R}[\mathbb{X}]$, as $f_{1}, \mathbb{X}, \mathbb{X}^{2}, \mathbb{X}^{3}, \cdots$ \overline{g} . If any basis vectors are in $\operatorname{in}(T)$, then the entire $\mathbb{R}[\mathbb{X}] \subset \operatorname{in}(T)$, hence $\mathbb{R}[\mathbb{X}] = \operatorname{in}(T)$. For \mathcal{X}^{n} , we may see $\overline{h} \mathbb{X}^{n+1} \longrightarrow \mathcal{X}^{n}$ under \overline{T} .
 - T is not injective. $ker(T) = \mathbb{R} \cdot 1$, all the constant functions.

Here, a common mistake is about mistaking the injectivity for $T: \mathbb{R}[X] \rightarrow \mathbb{R}[X]$. for injectivity of a function $f: \mathbb{R} \rightarrow \mathbb{R}$.

R[X] is the set of all polynomial functions
on R. A particular function, say,
$$f(x) = 2x+2$$
,
is only an element in [R[X]. We don't care
 $f(x)$, as a function $R \rightarrow R$, is surjective or injective home.

(e) • S is not a subspace, For example,
(0,0,0)
$$\not\in$$
 S.