Name:

\qquad
I_{n} denote the identity matrix of size $n . S_{n}$ is the set of permutations of n elements. For any prime p, we let $\mathbb{F}_{p}=\mathbb{Z} /(p)$ denote the finite field of p elements. Bonus questions do not count into points.

1. (50 pts, 10 points each) True or False, please justify your answers.

(a) There exists a linear transformation of \mathbb{R}^{2}, that takes the conic curve $x^{2}-y^{2}=1$ to $x^{2}+y^{2}=1$. (bonus: what if we change \mathbb{R} to $\mathbb{F}_{5} ? \mathbb{F}_{p}$?.)
$\sigma_{1}=(12)=\sigma_{2}$

(b) For any $\sigma_{1}, \sigma_{2} \in S_{n}$, we have $l\left(\sigma_{1} \circ \sigma_{2}\right)=l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right)$.
(c) The 3 vectors $(1,1,0),(2,3,0),(4,5,0)$ in \mathbb{R}^{3} are linearly independent.
(d) If A is an $n \times n$ matrix with determinant 1 and integer entries, then A^{-1} also has integer entries.
(e) If $z \in \mathbb{C}$ satisfies that $\bar{z}^{2}=1 / z^{3}$, then $|z|=1$. take modulus on both sides.
2. (50 points, 10 points each)
(a)

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{3}=? \quad\left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right)
$$

(b)

$$
\operatorname{det}\left(\begin{array}{lll}
0 & e & d \\
a & b & 0 \\
g & 0 & f
\end{array}\right)=? \quad-a e f-g b d .
$$

(c) Let $T: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ be the linear map of taking the derivative,

$$
T(f(x))=f^{\prime}(x)
$$

Is T surjective? Is T injective? (bonus: what if we change \mathbb{R} to \mathbb{F}_{5} ? or \mathbb{F}_{p} ? can you write down $\operatorname{ker}(T), i m(T)$?)
(d) Let $V=\operatorname{Map}(\mathbb{R}, \mathbb{R})$ be the linear space of all functions on \mathbb{R} and let $T: V \rightarrow \mathbb{R}$ be a linear map. Suppose we know that,

$$
T(\sin (x))=1, \quad T(\cos (x))=3
$$

then for any given $\theta \in \mathbb{R}$,

$$
T(\sin x \cdot \cos \theta+\cos x \cdot \sin \theta)
$$

$$
T(\sin (x+\theta))=? \quad=\quad \cos \theta+3 \sin \theta
$$

You may use $\sin (a+b)=\sin (a) \cos (b)+\sin (b) \cos (a)$.
(e) Let p be any prime (if you wish, you can let $p=11$), let $S=\{(x, y, z) \in$ $\left.\mathbb{F}_{p}^{3} \mid 2 x+3 y+5 z=1\right\}$. Is S a linear subspace of \mathbb{F}_{p}^{3} ? What is the size of S ?

p^{2}

1(a): False. $x^{2}-y^{2}=1$ is a hyperbola. $)($
$x^{2}+y^{2}=1$ is a circle
A linear transformation can shear. flip, stretch the plane. So, it can not move one to another.
$1(b)$ False. For example. let $n=12, \quad \sigma_{1}=\binom{12}{21}, \sigma_{2}=\binom{12}{21}$

$$
\begin{aligned}
\sigma_{1} \cdot \sigma_{2} & =\binom{12}{12} . \quad l\left(\sigma_{1} \cdot \sigma_{2}\right)=0, \quad l\left(\sigma_{1}\right)=l\left(\sigma_{2}\right)=1 \\
& \neq 1+1 .
\end{aligned}
$$

Graphically

1(c). False. span of the 3 vectors is contained in the z-plane $\{(x, y, z) \mid z=0\}$., which is 2 -dimensional. 3 vectors in 2 dimension space have. to be linearly dependent. (no need to find the actual linear combination to show linear dependence.)

1(d). True.

$$
\left(A^{-1}\right)_{i j}=\frac{1}{\operatorname{det} A} \cdot C_{j i} \stackrel{\downarrow}{=} C_{j i} \operatorname{det} A=1 .
$$

$C_{j i}$ is the co-factor. If A is an integer matrix, then any cofactor $C_{i j} \in \mathbb{Z}$.

ICe) True. This one is best solved by applying the absolute sign $1 \cdot 1$ on both sides.

$$
\left|\bar{z}^{2}\right|=\left|1 / z^{3}\right|
$$

but $\left|\bar{z}^{2}\right|=|\bar{z}|^{2}=|z|^{2}, \quad\left|1 / z^{3}\right|=1 /\left|z^{3}\right|=1 /|z|^{3}$
Hence

$$
|z|^{2}=1 /|z|^{3} \quad \Rightarrow|z|^{5}=1
$$

Since $|z| \geqslant 0 \quad \therefore \quad|z|=1$ is the only possibly.
2. (a), $\quad\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$
(b) $\quad-a e f-g b d$

$$
\int \begin{aligned}
& \text { most people } \\
& \text { get these } 2 \\
& \text { correct. }
\end{aligned}
$$

(c). T is surjective. To show this, let's fix a basis of $\mathbb{R}[x]$, as $\left\{1, x, x^{2}, x^{3}, \cdots\right\}$. If any basis vectors are in $\operatorname{im}(T)$, then the entire $\mathbb{R}[x] \subset \operatorname{im}(T)$, hence $\mathbb{R}[x]=\operatorname{im}(T)$. For x^{n}, we may see $\frac{1}{n} x^{n+1} \longmapsto x^{n}$ under T.
T is not infective. $\operatorname{ker}(T)=\mathbb{R} \cdot 1$, all the constant functions.

Here, a common mistake is about mistaking the injectivity for $T: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$. for injectivity of a function $f: \mathbb{R} \rightarrow \mathbb{R}$.
$\mathbb{R}[x]$ is the set of all polynomial functions on \mathbb{R}. A particular function, say, $f(x)=2 x+2$, is only an element in $\mathbb{R}[x]$. We don't care $f(x)$, as a function $\quad \mathbb{R} \rightarrow \mathbb{R}$, is surjective or infective here.
(d). $T(\sin (x+\theta))$

$$
\begin{aligned}
& =T(\sin x \cdot \cos \theta+\cos x \cdot \sin \theta) \\
& =1 \cdot \overbrace{T}^{\cos \theta}+3 \cdot \underbrace{\sin \theta}_{\text {as }} \theta
\end{aligned}
$$

some mistakes are: keep a left-over T like $\quad 1 \cdot T \cos \theta+3 \cdot T \sin \theta$.
(e). S is not a $\frac{\text { linear }}{\text { subspace, for example, }}$ $(0,0,0) \notin S$.

- Size of S is P^{2}.

