Name:

I_{n} denote the identity matrix of size n. Let $M_{n}(\mathbb{C})$ denote the set of $n \times n$ matrices with complex entries. The standard Hermitian form on \mathbb{C}^{n} is given by

$$
\langle z, w\rangle=\bar{z}_{1} w_{1}+\bar{z}_{2} w_{2}+\cdots+\bar{z}_{n} w_{n}
$$

where $z=\left(z_{1}, \cdots, z_{n}\right)^{t}, w=\left(w_{1}, \cdots, w_{n}\right)^{t}$ are two column vectors. (superscript t stands for 'transpose')

1. ($30 \mathrm{pts}, 10$ points each) True or False. If you think the answer is true, please justify your answer; if you think the answer is false, give a counter-example.
(a) For any complex $n \times n$ matrix A, there exists an invertible $n \times n$ matrix C, such that $C^{-1} A C$ is a diagonal matrix.
(b) Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a linear transformation, and \mathbb{C}^{n} be equipped with the standard Hermitian form. Assume there exists a basis of \mathbb{C}^{n} consist of eigenvectors of T, then these basis vectors are orthogonal to each other.
(c) If T and S are linear maps from \mathbb{C}^{n} to \mathbb{C}^{n}, and $T S=S T$. Then if $T v=\lambda v$ for some $v \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$, we also have $T(S v)=\lambda S v$.
2. (35 points) Let $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be a linear map, where

$$
\begin{aligned}
& T e_{1}=e_{1}+e_{2} \\
& T e_{2}=e_{2}+e_{3} \\
& T e_{3}=e_{3}+e_{1}
\end{aligned}
$$

(a) (10 points): If $z=(2,3,1)^{t}$, what is $T z=$?.
(b) (10 points): If $z=\left(z_{1}, z_{2}, z_{3}\right)^{t}$, what is $T z=$?
(c) (15 points): Can T be diagonalized? Namely, can you find a basis \widetilde{e}_{i} of \mathbb{C}^{3}, such that $T \widetilde{e}_{i}=\lambda_{i} \widetilde{e}_{i}$ for some $\lambda_{i} \in \mathbb{C}$? Please give your reasoning. (Hint: you don't have to find \widetilde{e}_{i} and λ_{i} explicitly.)
3. (35 points) Let $B: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a symmetric bilinear form, for any $z, w \in \mathbb{C}^{n}$, we have

$$
B(z, w)=z^{t}[B] w=\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} B_{i j} w_{j}
$$

where $[B]$ is a symmetric matrix with entries $B_{i j}$.
(a) (10 points) if $\operatorname{det}([B]) \neq 0$, can you always find an invertible matrix C, such that $C^{t}[B] C=I_{n}$? Please explain.
(b) (10 points) if $\operatorname{det}([B]) \neq 0$, is it true that for any $v \neq 0$, we have $B(v, v) \neq$ 0 ? Please explain.
(c) (15 points) Let the matrix $[B]$ be given by

$$
[B]=\left(\begin{array}{cc}
2 & i \\
i & 2
\end{array}\right)
$$

Find a matrix C such that $C^{t}[B] C$ is diagonal. Please show your steps.

