Math H54 Midterm 1

Nov 14, 2022

Name:

 I_n denote the identity matrix of size n. Let $M_n(\mathbb{C})$ denote the set of $n \times n$ matrices with complex entries. The standard Hermitian form on \mathbb{C}^n is given by

$$\langle z, w \rangle = \bar{z}_1 w_1 + \bar{z}_2 w_2 + \dots + \bar{z}_n w_n$$

where $z = (z_1, \dots, z_n)^t$, $w = (w_1, \dots, w_n)^t$ are two column vectors. (superscript t stands for 'transpose')

- 1. (30 pts, 10 points each) True or False. If you think the answer is true, please justify your answer; if you think the answer is false, give a counter-example.
 - (a) For any complex $n \times n$ matrix A, there exists an invertible $n \times n$ matrix C, such that $C^{-1}AC$ is a diagonal matrix.

False.
$$\underline{E_X}$$
: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

(b) Let $T : \mathbb{C}^n \to \mathbb{C}^n$ be a linear transformation, and \mathbb{C}^n be equipped with the standard Hermitian form. Assume there exists a basis of \mathbb{C}^n consist of eigenvectors of T, then these basis vectors are orthogonal to each other.

False.
$$T = 0$$
 $e_1 = \begin{pmatrix} l \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} l \\ l \end{pmatrix}$
not orthogonal to each other.

(c) If T and S are linear maps from \mathbb{C}^n to \mathbb{C}^n , and TS = ST. Then if $Tv = \lambda v$ for some $v \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$, we also have $T(Sv) = \lambda Sv$.

$$T(Sv) = STv = S(\lambda v) = \lambda(Sv)$$

True

2. (35 points) Let $T: \mathbb{C}^3 \to \mathbb{C}^3$ be a linear map, where

$$Te_1 = e_1 + e_2$$
$$Te_2 = e_2 + e_3$$
$$Te_3 = e_3 + e_1$$

(a) (10 points): If
$$z = (2, 3, 1)^{t}$$
, what is $Tz = ?$.

$$Z = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = 2 \cdot e_{1} + 3 \cdot e_{2} + e_{3}$$

$$T \left(2 \cdot e_{1} + 3 \cdot e_{2} + e_{3} \right) = 2 \cdot T(e_{1}) + 3 \cdot T(e_{2}) + T(e_{3})$$

$$= 2 \cdot (e_{1} + e_{2}) + 3 \cdot (e_{2} + e_{3}) + e_{3} + e_{1}$$
(b) (10 points): If $z = (z_{1}, z_{2}, z_{3})^{t}$, what is $Tz = ?$

$$T \left(z_{1} \cdot e_{1} + z_{2} \cdot e_{2} + z_{3} \cdot e_{3} \right) = z_{1} \cdot T(e_{1}) + z_{2} \cdot T(e_{2}) + z_{3} \cdot T(e_{3})$$

$$= z_{1} \cdot (e_{1} + e_{2}) + z_{3} \cdot (e_{2} + e_{3}) + z_{3} \cdot e_{3} + e_{1}$$
(a) find invertible $C \cdot s^{-1} \cdot = (z_{1} + e_{2}) + z_{3} \cdot (e_{2} + e_{3}) + z_{3} \cdot e_{3} + e_{1}$
(c) (15 points): Can T be diagonalized? Namely, can you find a basis \tilde{e}_{1} of $+ (z_{1} + z_{2}) \cdot e_{3}$.

$$C \cdot \begin{pmatrix} \lambda_{1} \cdot \lambda_{1} \cdot \lambda_{3} \\ you don't have to find \tilde{e}_{i} and $\lambda_{i} \in \mathbb{C}$? Please give your reasoning. (Hint: T + (z_{1} + z_{3}) \cdot e_{3}$$
.
(d) Two methods: $(1 - 0 \cdot 1)$ = $i d + \begin{pmatrix} 0 & 0 \cdot 1 \\ 1 & 0 & 0 \end{pmatrix}$

$$T^{\dagger}T = \begin{pmatrix} | & | & 0 \\ 0 & | & | \\ 0 & | & | \\ 0 & | & | \end{pmatrix} \begin{pmatrix} | & 0 & | \\ 1 & | & 0 \\ 0 & | & | \end{pmatrix} = \begin{pmatrix} 2 & | & | \\ 1 & 2 & | \\ 1 & | & 2 \end{pmatrix}, \quad T^{\dagger}T^{\dagger} = \cdots$$

$$\begin{array}{rcl} &\mathcal{Z}=&(\vec{e}_{1},\vec{e}_{2},\vec{e}_{3})\begin{pmatrix} z_{1}\\ z_{2}\\ z_{3} \end{pmatrix}, \\ &T(\vec{e}_{1},\vec{e}_{2},\vec{e}_{3})=&(\vec{e}_{1}+\vec{e}_{2},\ \vec{e}_{3}+\vec{e}_{3},\vec{e}_{3}+\vec{e}_{1})\\ &=&(\vec{e}_{1},\vec{e}_{2},\ \vec{e}_{3})\begin{pmatrix} 1&0&1\\ 1&1&0\\ 0&1&1 \end{pmatrix}\\ \\ &T \end{tabular} \\ &T \end{tabular} =&T & \left(\begin{array}{c} e_{1},e_{2},\ e_{3} \\ e_{2}\\ e_{3} \end{array} \right) \begin{pmatrix} z_{1}\\ z_{2}\\ z_{3} \end{pmatrix} =& \begin{pmatrix} e_{1},e_{2},\ e_{3} \end{pmatrix} \begin{pmatrix} z_{1}\\ z_{2}\\ z_{3} \end{pmatrix} \\ &=& \begin{pmatrix} e_{1}e_{2}e_{3} \end{pmatrix} \begin{pmatrix} z_{1}+z_{3}\\ z_{2}+z_{3} \end{pmatrix} \\ &=& \begin{pmatrix} e_{1}e_{2}e_{3} \end{pmatrix} \begin{pmatrix} z_{1}+z_{3}\\ z_{2}+z_{3} \end{pmatrix} =& \begin{pmatrix} z_{1}+z_{3} \end{pmatrix} e_{1} +& (z_{1}+z_{3})e_{2} +& \\ & (z_{1}+z_{3})e_{3} \\ & (z_{1}+z_{3})e_{3} \\ & (z_{1}+z_{3})e_{3} \\ & (z_{1}+z_{3})e_{3} \\ & & (z_{1}+z_{3})e_{3} \\ \end{array} \right) \\ &=& \begin{array}{c} e^{-dtagonal} \\ &R_{3}\cdot R_{3}\cdot R_{1}\cdot T \cdot &=& D \end{array} \end{array}$$

-

3. (35 points) Let $B: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ be a symmetric bilinear form, for any $z, w \in \mathbb{C}^n$, we have

$$B(z, w) = z^{t}[B]w = \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}B_{ij}w_{j},$$

where [B] is a symmetric matrix with entries B_{ij} .

(a) (10 points) if det([B]) $\neq 0$, can you always find an invertible matrix C, such that $C^t[B]C = I_n$? Please explain.

Such that
$$C[B] C = I_n$$
. These explain.
Yes. By the inertia: then for C -bilinear form.
• any symm $(C - matrix B, \exists invertible C, s.t.)$
 $C^{\dagger} \cdot B \cdot C = ({}^{1}i, {}_{\circ \circ \circ})^{\frac{1}{2}n}$ Here, $r = n$
(b) (10 points) if $det([B]) \neq 0$, is it true that for any $v \neq 0$, we have $B(v, v) \neq$
 0 ? Please explain.
 $False: ({}^{1}i)({}^{1}i)({}^{1}i) = 0$
 $False: ({}^{1}i)({}^{1}i)({}^{1}i) = 0$
(c) (15 points) Let the matrix $[B]$ be given by $\frac{1}{2}0$

$$[B] = \begin{pmatrix} 2 & i \\ i & 2 \end{pmatrix}$$

Find a matrix C such that $C^t[B]C$ is diagonal. Please show your steps.

P. g.

$$\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ i \\ i \\ z \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 4+2i & 0 \\ 0 & 4-2i \end{pmatrix}$$

$$C^{t} \qquad C$$

• It is in general, not meaningful to talk about eigenvalue & eigenvector of a matrix, unless the metrix comes from a linear transformation.