Name:
I_{n} denote the identity matrix of size n. Let $M_{n}(\mathbb{C})$ denote the set of $n \times n$ matrices with complex entries. The standard Hermitian form on \mathbb{C}^{n} is given by

$$
\langle z, w\rangle=\bar{z}_{1} w_{1}+\bar{z}_{2} w_{2}+\cdots+\bar{z}_{n} w_{n}
$$

where $z=\left(z_{1}, \cdots, z_{n}\right)^{t}, w=\left(w_{1}, \cdots, w_{n}\right)^{t}$ are two column vectors. (superscript t stands for 'transpose')

1. ($30 \mathrm{pts}, 10$ points each) True or False. If you think the answer is true, please justify your answer; if you think the answer is false, give a counterexample.
(a) For any complex $n \times n$ matrix A, there exists an invertible $n \times n$ matrix C, such that $C^{-1} A C$ is a diagonal matrix.
False. Ex: $\quad\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
spectral the

$$
T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \quad \text { lin } \propto .
$$

there exist ONB of \mathbb{C}^{n}, and ONB are eigen rectors of T
$\Leftrightarrow T$ is normal.
(b) Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a linear transformation, and \mathbb{C}^{n} be equipped with the standard Hermitian form. Assume there exists a basis of \mathbb{C}^{n} consist of eigenvectors of T, then these basis vectors are orthogonal to each other.

False.

$$
T=0 \quad e_{1}=\binom{1}{0}, \quad e_{2}=\binom{1}{1}
$$

not orthogonal to each other.
(c) If T and S are linear maps from \mathbb{C}^{n} to \mathbb{C}^{n}, and $T S=S T$. Then if $T v=\lambda v$ for some $v \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$, we also have $T(S v)=\lambda S v$.

$$
T(S v)=S T v=S(\lambda v)=\lambda(S v)
$$

True,
2. (35 points) Let $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be a linear map, where

$$
\begin{aligned}
& T e_{1}=e_{1}+e_{2} \\
& T e_{2}=e_{2}+e_{3} \\
& T e_{3}=e_{3}+e_{1}
\end{aligned}
$$

e_{1}, e_{2}, e_{3} are std basis in \mathbb{C}^{3}.
(a) (10 points): If $z=(2,3,1)^{t}$, what is $T z=$?.

$$
\begin{aligned}
& z=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)=2 \cdot e_{1}+3 \cdot e_{2}+e_{3} \\
& T\left(2 e_{1}+3 e_{2}+e_{3}\right)=2 T\left(e_{1}\right)+3 \cdot T\left(e_{2}\right)+T\left(e_{3}\right) \\
&=2\left(e_{1}+e_{2}\right)+3\left(e_{2}+e_{3}\right)+e_{3}+e_{1}
\end{aligned}
$$

(b) (10 points): If $z=\left(z_{1}, z_{2}, z_{3}\right)^{t}$, what is $T z=? \quad=3 e_{1}+J e_{2}+4 e_{3}$.

$$
\begin{aligned}
T\left(z_{1} e_{1}+z_{2} e_{2}+z_{3} e_{3}\right)= & z_{1} T\left(e_{1}\right)+z_{2} T\left(e_{2}\right)+z_{3} T\left(e_{3}\right) \\
& =z_{1}\left(e_{1}+e_{2}\right)+z_{2}\left(e_{2}+e_{3}\right)+z_{3}\left(e_{3}+e_{1}\right) \\
& =\left(z_{1}+z_{3}\right) e_{1}+\left(z_{1}+z_{2}\right) e_{2}
\end{aligned}
$$

can you find invertible C sot.

$$
\tau
$$

$C=(I)(V)())$ dig g Two methods:
recommended.

$$
\operatorname{det}(\lambda-T)=(\lambda-1)^{3}+1
$$

\Rightarrow roots are all distinct

$$
\lambda-1=3 \sqrt{-1}=\left\{\begin{array}{l}
-1 \\
-e^{2 \pi i / 3} \\
-e^{4 \pi i / 3}
\end{array}\right.
$$

$\Rightarrow \quad T$ is diagonalizable.
\#2: check if T is normal, if normal, then diagonalizable.

$$
\begin{gathered}
T^{*}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \quad \text { check } T^{*} T=T \cdot T^{*} . \\
T^{*} T=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right), \quad \begin{array}{l}
\text { sinularly do } \quad T T^{*}=\ldots
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& z=\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right) . \\
& T\left(e_{1}, e_{2}, e_{3}\right)=\left(e_{1}+e_{2}, e_{2}+e_{3}, e_{3}+e_{1}\right) \\
& =\left(e_{1}, e_{2}, e_{3}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \\
& T z=T\left(e_{1}, e_{2}, e_{3}\right)\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right)=\left(e_{1}, e_{2}, e_{3}\right) \underbrace{\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)}\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right) \\
& =\left(e_{1} e_{2} e_{3}\right)\left(\begin{array}{l}
z_{1}+z_{3} \\
z_{1}+z_{2} \\
z_{2}+z_{3}
\end{array}\right)=\left(z_{1}+z_{3}\right) e_{1}+\left(z_{1}+z_{2}\right) e_{2}+\quad . \quad\left(z_{2}+z_{3}\right) e_{3} . \\
& R_{3} R_{2} \cdot R_{1} T \cdot=D^{\text {ciagonal. }}
\end{aligned}
$$

3. (35 points) Let $B: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a symmetric bilinear form, for any $z, w \in \mathbb{C}^{n}$, we have

$$
B(z, w)=z^{t}[B] w=\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} B_{i j} w_{j},
$$

where $[B]$ is a symmetric matrix with entries $B_{i j}$.
(a) (10 points) if $\operatorname{det}([B]) \neq 0$, can you always find an invertible matrix C, such that $C^{t}[B] C=I_{n}$? Please explain.
Yes. By the inertia the for \mathcal{C} - bilinear form.

- any symm \mathbb{C} - matrix B, \exists invertible C, sit.

$$
\left.C^{t} \cdot B \cdot C=\left(\begin{array}{ll}
1 & \\
& 1, \\
& \\
& 0_{0}
\end{array}\right)\right\}^{r} \quad \text { Here, } r=n
$$

(b) $(10$ points) if $\operatorname{det}([B]) \neq 0$, is it true that for any $v \neq 0$, we have $B(v, v) \neq$ 0 ? Please explain.

False: $\left(\begin{array}{ll}1 & i\end{array}\right)\binom{1}{1}\binom{1}{i}=0$
(c) (15 points) Let the matrix $[B]$ be given by

$$
\begin{aligned}
&= \operatorname{det}\left(C^{t}\right) \cdot \operatorname{det}(B) \\
& \cdot \operatorname{det} C \\
&= \operatorname{det}(B) \cdot[\operatorname{det}(C)]^{2} \\
& \neq 0
\end{aligned}
$$

$$
[B]=\left(\begin{array}{ll}
2 & i \\
i & 2
\end{array}\right)
$$

Find a matrix C such that $C^{t}[B] C$ is diagonal. Please show your steps.
eg.

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & i \\
i & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
4+2 i & 0 \\
0 & 4-2 i
\end{array}\right) \\
& C^{t .}
\end{aligned}
$$

Remark: What is $a^{\frac{\text { square }}{} \text { matrix? }}$
what can you learn by finding the eigenvalue?

- A matrix M is $\left(\begin{array}{c}\cdots \\ \cdots- \\ \cdots- \\ -\end{array}\right)$, a bunch of it doesn't mean anything yet.
- A linear transformation

$$
T=V \rightarrow V
$$

is a 'meaningful" obj, and one can ask for its eigenvalue \& eigenvectors.

- We can represent a linear transformation using a matrix, by choosing a basis of V say e_{1}, \ldots, e_{n} is a basis.

$$
\text { then any vector. } v=\left(e_{1}, \cdots, e_{n}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad x_{i} \in \mathbb{C}
$$

suppose

$$
\begin{equation*}
T\left(e_{i}\right)=e_{1} \cdot T_{1 i}+e_{2} \cdot T_{2 i}+\cdots+e_{n} \cdot T_{n i} \tag{ij}
\end{equation*}
$$

then $T\left(e_{1}, \cdots, e_{n}\right)=\left(e_{1}, \cdots, e_{n}\right)\left(\begin{array}{cccc}T_{11} & T_{12} & \cdots & T_{1 \text { m }} \\ T_{12} & \vdots & & \vdots \\ T_{n 1} & & \cdots & - \\ T_{n n}\end{array}\right)$

$$
\begin{aligned}
T \cdot v & =T\left(e_{1}, \cdots, e_{n}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
\dot{x}_{n}
\end{array}\right) \\
& =\left(e_{1}, \cdots, e_{2}\right) \underbrace{[T]\left(T v_{1}\right)}_{\left.\begin{array}{r}
\text { coefficients } \\
\text { of }
\end{array}\right)} \begin{array}{c}
{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)}
\end{array}
\end{aligned}
$$

- It is in general, not meaningful to talk about eigenvalue \& eigenvector of a matrix, unless the matrix comes from a linear transformation.

