Math H54 Week 1

Jenny Chen

August 30, 2022

1. Problem 6

The first thing we want to do is represent the circles with equations with respect to time. Courtesy to Bryan Li , the equations are the following where $\left(h_{i}, k_{i}\right)$ is the center and a_{i} is the radius:

$$
\begin{aligned}
& r_{1}=<h_{1}+a_{1} \cos \omega t, k_{1}+a_{1} \sin \omega t> \\
& r_{2}=<h_{2}+a_{2} \cos \omega t, k_{2}+a_{2} \sin \omega t> \\
& r_{3}=<h_{3}+a_{3} \cos \omega t, k_{3}+a_{3} \sin \omega t>
\end{aligned}
$$

It is stated that they have the same angular velocities, so their ω 's are the same.
As Bryan also pointed out, the theorem given in problem $4, \overrightarrow{O M}=\frac{1}{3}(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C})$ is crucial to solving the problem. The equation is defined where O is located at the origin $<0,0\rangle, A$ is located on Circle 1, B is located on Circle 2, and C is located on Circle 3. Utilizing this information, we can define the following:

$$
\begin{aligned}
& \overrightarrow{O A}=<h_{1}+a_{1} \cos \omega t, k_{1}+a_{1} \sin \omega t> \\
& \overrightarrow{O B}=<h_{2}+a_{2} \cos \omega t, k_{2}+a_{2} \sin \omega t> \\
& \overrightarrow{O C}=<h_{3}+a_{3} \cos \omega t, k_{3}+a_{3} \sin \omega t> \\
& \overrightarrow{O M}=\frac{1}{3}<h_{1}+h_{2}+h_{3}+\left(a_{1}+a_{2}+a_{3}\right) \cos \omega t, k_{1}+k_{2}+k_{3}+\left(a_{1}+a_{2}+a_{3}\right) \sin \omega t>
\end{aligned}
$$

By observation we see that $O \vec{M}$ or the barycenter sweeps out a circle with center at $\frac{1}{3}\left(h_{1}+h_{2}+h_{3}, k_{1}+\right.$ $\left.k_{2}+k_{3}\right)$ and radius $\frac{1}{3}\left(a_{1}+a_{2}+a_{3}\right)$ at the same angular velocity ω.

2. Problem 7

$$
\begin{aligned}
\overrightarrow{A A^{\prime}} & =\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C}) \\
2 \overrightarrow{A A^{\prime}} & =\overrightarrow{A B}+\overrightarrow{A C} \\
\left(\overrightarrow{A A^{\prime}}-\overrightarrow{A B}\right)+\left(\overrightarrow{A A^{\prime}}-\overrightarrow{A C}\right) & =\overrightarrow{0} \\
\overrightarrow{B A^{\prime}}+\overrightarrow{C A^{\prime}} & =\overrightarrow{0} \\
\overrightarrow{0} & =\overrightarrow{0}
\end{aligned}
$$

Explanation for the last statement: Because A^{\prime} is the midpoint, $\overrightarrow{B A^{\prime}}$ and $\overrightarrow{C A^{\prime}}$ have the same magnitude. Furthermore, since they are opposite in orientation, they add up to the zero vector. Thus this statement is true.
3. Problem 8

There exists a triangle $\triangle A B C$ where A^{\prime}, B^{\prime}, and C^{\prime} are its midpoints which are opposite correspondingly to the vertices A, B, and C. In order for the medians of $\triangle A B C$ to form a triangle, they must add up to $\overrightarrow{0}$.

Using the previous theorem in Problem 7, we can define $\overrightarrow{A A^{\prime}}, \overrightarrow{B B^{\prime}}$, and $\overrightarrow{C C^{\prime}}$ in terms of two other sides:

$$
\begin{aligned}
\overrightarrow{A A^{\prime}} & =\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C}) \\
\overrightarrow{B B^{\prime}} & =\frac{1}{2}(\overrightarrow{B A}+\overrightarrow{B C}) \\
\overrightarrow{C C^{\prime}} & =\frac{1}{2}(\overrightarrow{C A}+\overrightarrow{C B})
\end{aligned}
$$

Thus adding them up together:

$$
\overrightarrow{A A^{\prime}}+\overrightarrow{B B^{\prime}}+\overrightarrow{C C^{\prime}}=\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})+\frac{1}{2}(\overrightarrow{B A}+\overrightarrow{B C})+\frac{1}{2}(\overrightarrow{C A}+\overrightarrow{C B})
$$

And moving terms around:

$$
\overrightarrow{A A}^{\prime}+\overrightarrow{B B^{\prime}}+\overrightarrow{C C^{\prime}}=\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{B A})+\frac{1}{2}(\overrightarrow{A C}+\overrightarrow{C A})+\frac{1}{2}(\overrightarrow{B C}+\overrightarrow{C B})
$$

Since they are opposite in direction, they cancel each other out when they're added together:

$$
\begin{aligned}
\overrightarrow{A A^{\prime}}+\overrightarrow{B B^{\prime}}+\overrightarrow{C C^{\prime}} & =\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0} \\
& =\overrightarrow{0}
\end{aligned}
$$

As a result, the medians of $\triangle A B C$ form a triangle.

4. Problem 10

By observing the diagram and utilizing the theorem from problem 7:

$$
\begin{aligned}
& \overrightarrow{A A^{\prime}}=\overrightarrow{D F}=\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C}) \\
& \overrightarrow{B B^{\prime}}=\overrightarrow{F E}=\frac{1}{2}(\overrightarrow{B C}+\overrightarrow{B A}) \\
& \overrightarrow{C C^{\prime}}=\overrightarrow{E D}=\frac{1}{2}(\overrightarrow{C B}+\overrightarrow{C A})
\end{aligned}
$$

And then now expressing the medians of the second triangle with respect to the first:

$$
\begin{aligned}
D D^{\prime} & =\frac{1}{2}\left(\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})+\frac{1}{2}(\overrightarrow{B A}+\overrightarrow{C A})\right) \\
\overrightarrow{E E^{\prime}} & =\frac{1}{2}\left(\frac{1}{2}(\overrightarrow{C B}+\overrightarrow{C A})+\frac{1}{2}(\overrightarrow{C B}+\overrightarrow{A B})\right) \\
\overrightarrow{F F^{\prime}} & =\frac{1}{2}\left(\frac{1}{2}(\overrightarrow{B A}+\overrightarrow{C A})+\frac{1}{2}(\overrightarrow{B C}+\overrightarrow{B A})\right)
\end{aligned}
$$

Combining the terms, the following is obtained:

$$
\begin{aligned}
\overrightarrow{D D^{\prime}} & =\frac{1}{4}(2 \overrightarrow{A C}+\overrightarrow{B C}+\overrightarrow{A B}) \\
\overrightarrow{E E^{\prime}} & =\frac{1}{4}(2 \overrightarrow{C B}+\overrightarrow{C A}+\overrightarrow{A B}) \\
\overrightarrow{F F^{\prime}} & =\frac{1}{4}(2 \overrightarrow{B A}+\overrightarrow{B C}+\overrightarrow{C A})
\end{aligned}
$$

Then something convenient appears! The rightmost two terms add up to the first term:

$$
\begin{aligned}
\overrightarrow{D D^{\prime}} & =\frac{1}{4}(2 \overrightarrow{A C}+\overrightarrow{A C}) \\
\overrightarrow{E E^{\prime}} & =\frac{1}{4}(2 \overrightarrow{C B}+\overrightarrow{C B}) \\
\overrightarrow{F F^{\prime}} & =\frac{1}{4}(2 \overrightarrow{B A}+\overrightarrow{B A})
\end{aligned}
$$

Further simplifying:

$$
\begin{aligned}
\overrightarrow{D D^{\prime}} & =\frac{3}{4}(\overrightarrow{A C}) \\
\overrightarrow{E E^{\prime}} & =\frac{3}{4}(\overrightarrow{C B}) \\
\overrightarrow{F F^{\prime}} & =\frac{3}{4}(\overrightarrow{B A})
\end{aligned}
$$

The third triangle is composed of the medians of the second triangle or correspondingly $D \vec{D}^{\prime}, \overrightarrow{E E^{\prime}}$, and $\overrightarrow{F F^{\prime}}$. Because the sides of the third triangle are simply a scalar multiple of the original sides of the triangle, it is similar to the first triangle. And seen through the above equations, the coefficient of similarity is $\frac{3}{4}$.

5. Problem 11

Figure 1: Fig. 1

$$
\begin{aligned}
\overrightarrow{O P} & =\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B}) \\
\overrightarrow{O R} & =\frac{1}{2}(\overrightarrow{O D}+\overrightarrow{O C}) \\
\overrightarrow{O T} & =\frac{1}{2}(\overrightarrow{O E}+\overrightarrow{O D}) \\
\overrightarrow{O Q} & =\frac{1}{2}(\overrightarrow{O B}+\overrightarrow{O C})
\end{aligned}
$$

Using the theorem from problem 7:

$$
\begin{aligned}
\overrightarrow{O F} & =\frac{1}{2}(\overrightarrow{O P}+\overrightarrow{O R}) \\
& =\frac{1}{4}(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}) \\
\overrightarrow{O G} & =\frac{1}{2}(\overrightarrow{O T}+\overrightarrow{O Q}) \\
& =\frac{1}{4}(\overrightarrow{O E}+\overrightarrow{O D}+\overrightarrow{O B}+\overrightarrow{O C})
\end{aligned}
$$

Thus when we subtract, many of the vectors cancel out, giving:

$$
\begin{aligned}
\overrightarrow{O G}-\overrightarrow{O F} & =\frac{1}{4}(\overrightarrow{O E}-\overrightarrow{O A}) \\
\overrightarrow{F G} & =\frac{1}{4} \overrightarrow{E A}
\end{aligned}
$$

Finally, we see that the segment is $1 / 4$ in length of $\overrightarrow{E A}$ and since it's a scalar multiple of $\overrightarrow{E A}$, it's parallel to it as well.
6. Problem 12

Figure 2: Fig. 2

$$
\begin{aligned}
\overrightarrow{O X} & =\overrightarrow{O B}+\lambda \overrightarrow{B A} \\
& =\overrightarrow{O B}+\lambda(\overrightarrow{O A}-\overrightarrow{O B}) \\
& =\lambda \overrightarrow{O A}+(1-\lambda) \overrightarrow{O B}
\end{aligned}
$$

