

$$\langle \vec{v}, \vec{u} \ \vec{\tau} = |\vec{v}| |\vec{u}| \cos \theta$$

$$\rightarrow \underline{\text{lineeu operation}}$$

$$= \underbrace{\langle \vec{v}, \vec{u} \ \vec{\tau} = \hat{v} |\vec{u}| \cos \theta}_{\text{scalar multiplication}} \\ e.g. < \vec{v}, \pm \vec{v}, \quad \vec{u} \ \vec{\tau} = \underbrace{\langle \vec{v}, \vec{u} \ \vec{\tau} + \langle \vec{v}_2, \vec{v} \ \vec{v} \$$

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{|\vec{u}| \cdot |\vec{v}|} = \langle \vec{u}, \vec{v}, \rangle + \langle \vec$$

Basis vectors

$$e_{1(0,1)} \qquad Any other vectors can be written in
$$e_{2(1,0)} \qquad tree linear combination of examples
(e, e_1) \Rightarrow orthonormal spaces
 $e_1 e_1 e_1 = e_{1+e_1=0}$
Claim: $\vec{V} = \langle \vec{v}, e_1 \rangle e_1 + \langle \vec{v}, e_1 \rangle e_1$
Suppose $V = \alpha_1 e_1 + \alpha_2 e_1$
 $\alpha_{pply} \langle \cdot, e_1 \rangle = \langle \alpha_1 e_1 + \alpha_2 e_2, e_1 \rangle$
 $= \langle \alpha_1 e_1, e_1 \rangle + \langle \alpha_2 e_1, e_1 \rangle$
 $= \langle \alpha_1 e_1, e_1 \rangle + \langle \alpha_2 e_1, e_1 \rangle$
 $= \langle \alpha_1 e_{11} + \alpha_2 \cdot 0$
 $= \alpha_1$
Stewed basis on \mathbb{R}^2
If (E_1, E_2) in \mathbb{R}^2 satisfies $\forall V = \alpha_1 E_1 + \alpha_2 E_2$
then (E_1, E_2) is a basis
Coordinates: given a basis (E_1, E_2)
we say vector \vec{V} has coordinate (α_1, α_1)
 $if \vec{V} = \alpha_1 E_1 + \alpha_2 E_3$$$$$