User Tools

Site Tools


math104-f21:hw15

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math104-f21:hw15 [2021/12/03 12:51]
pzhou created
math104-f21:hw15 [2022/01/11 08:36] (current)
pzhou ↷ Page moved from math104:hw15 to math104-f21:hw15
Line 2: Line 2:
 This is for your practice only, not going to be graded. The solution will be release next Wednesday. This is for your practice only, not going to be graded. The solution will be release next Wednesday.
  
-1. Ross Ex 33.9 (uniform convergence and integral)+=== 1. Ross Ex 33.9 === 
 +(uniform convergence and integral)
  
-2Ross Ex 33.5 (bound an integral by replacing an part of the integrand by something nice)+See Rudin Thm 7.16 (page 151)
  
-3. Ross Ex 33.14 (a). +=== 2. Ross Ex 33.5 === 
 +(bound an integral by replacing an part of the integrand by something nice) 
 + 
 +We want to show 
 +$$| \int_{-2\pi}^{2 \pi} x^2 \sin^8(e^x) dx |  \leq 16 \pi^3 /3 $$ 
 +since $|\sin^8(e^x)| \leq 1$, we have 
 +$$| \int_{-2\pi}^{2 \pi} x^2 \sin^8(e^x) dx | \leq   \int_{-2\pi}^{2 \pi} |x^2 \sin^8(e^x)| dx  \leq \int_{-2\pi}^{2 \pi} |x^2| dx = x^3/3|^{2\pi}_{-2\pi} =  16 \pi^3 /3 $$ 
 + 
 + 
 +=== 3. Ross Ex 33.14 (a). === 
 +For any continuous $g(x) \geq 0$ on $[a,b]$ and continuous $f(x)$, we want to show 
 +$$ \int_a^b f(t) g(t) dt = f(x)  \int_a^b  g(t) dt $$ 
 +for some $x \in [a,b]$.  
 + 
 +Proof: If $g(t) =0 $ for all $t \in [a,b]$ then both sides are zero, and there is nothing to prove. Otherwise, assume $g(t) \neq 0$ for some $t \in [a,b]$. By continuity, $g(t)$ is non-zero hence positive on an open subset, hence  $\int_a^b g(t) dt > 0$.  
 + 
 +let $M = \sup \{f(t): t \in [a,b]\}$ and $ m= \inf \{f(t): t \in [a,b]\}$, then since $g(t) \geq 0$, we have $m g(t) \leq f(t) g(t) \leq M g(t)$, thus  
 +$$ m \int_a^b  g(t) dt \leq \int_a^b f(t) g(t) dt \leq M \int_a^b  g(t) dt. $$ 
 +Thus, $$ A = \frac{\int_a^b f(t) g(t) dt}{ \int_a^b  g(t) dt} \in [m, M]$$ 
 +by intermediate value theorem, there is $x \in [a,b]$, such that $f(x) = A$. This finishes the proof.  
 + 
 + 
 +=== note=== 
 +For the following two problems, if $a > b$, then $\int_a^b f(t) dt = - \int_b^a f(t) dt $.  
 + 
 +=== 4. Ross Ex 34.5,=== 
 + 
 + 
 +Let $f$ be continuous on $\R$, and let $F(x)$ be defined by 
 +$$ F(x) = \int_{x-1}^{x+1} f(t) dt $$ 
 +show that $F$ is differentiable on $\R$ and compute $F'(x)$.  
 + 
 +Solution: we prove by definition. For any $\epsilon \neq 0$, we have  
 +$$ F(x+\epsilon) - F(x) = \int_{x+\epsilon-1}^{x+\epsilon+1} f(t) dt - \int_{x-1}^{x+1} f(t) dt 
 += \int_{x+1}^{x+\epsilon+1} f(t) dt - \int_{x-1}^{x+\epsilon-1} f(t) dt $$ 
 +Divide by $\epsilon$ and taking limit, we have 
 +$$ \lim_{\epsilon \to 0} \frac{F(x+\epsilon) - F(x)}{\epsilon} = \lim_{\epsilon \to 0^+} \epsilon^{-1} \int_{x+1}^{x+\epsilon+1} f(t) dt - \epsilon^{-1} \int_{x-1}^{x+\epsilon-1} f(t) dt = f(x+1) - f(x-1) $$ 
 +where we used fundamental theorem of calculus.  
 + 
 +Hence $$F'(x) = f(x+1) - f(x-1) $$ 
 + 
 +=== 34.6. === 
 +Let $f$ be continuous function on $\R$, let  
 +$$ G(x) = \int^{sin(x)}_0 f(t) dt $$ 
 +prove that $G(x)$ is differentiable, and compute $G'(x)$. 
 + 
 +Define $H(u) = \int^{u}_0 f(t) dt $, for any $u \in \R$, then $G(x) = H(\sin(x))$. Since $H(u)$ is differentiable, with $H'(u) = f(u)$, and $\sin(x)$ is differentiable, we have $G(x)$ is differentiable, with  
 +$$ G'(x) = H'(\sin(x)) \cos(x) = f(\sin(x)) \cos(x) $$ 
 + 
 +=== 6, 35.3 === 
 +See definition 35.2 for Stieljes integral. In particular, if $F$ has a jump on the integration domain's boundary, those points are considered in the integral. Hence 
 +$$ \int_a^b f(t) d F(t) = \sum_{n \in [a,b] \cap \Z} f(n) $$ 
 +For example,  
 +$$ \int_0^6 x dF(x) = 0 + 1 + \cdots + 6 = .. $$ 
 + 
 +=== 7, 35.4 === 
 +Since $F(t)$ is differentiable and monotone over that range, we have $dF(x) = F'(x) dx$, with $F'(x) = \cos(x)$ for $t \in [-\pi/2, \pi/2]$.  
 +$$ \int_0^{\pi/2} x d F(x) = \int_0^{\pi/2} x \cos(x) d x $$ 
 + 
 +Alternatively, one can compute using integration by part. If $f$ is also monotone and differentiable, then  
 +$$ \int_a^b f dF = \int_a^b d(f F) - F df = f F|^b_a - \int_a^b F df(x) $$ 
 +Here, in this problem, we have $f(x) = x$, thus 
 +$$ \int_0^{\pi/2} x d F(x) = x \sin(x)|^{\pi/2}_0 - \int_0^{\pi/2} \sin(x) dx = \pi/2 - (-\cos(x))|^{\pi/2}_0 = \pi/2 -1. $$
  
-4,5. Ross Ex 34.5, 34.6. Fundamental theorem of calculus, and chain rule 
  
  
math104-f21/hw15.1638564680.txt.gz · Last modified: 2021/12/03 12:51 by pzhou