This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
math104-f21:hw7 [2021/10/15 23:00] pzhou |
math104-f21:hw7 [2022/01/11 08:36] (current) pzhou ↷ Page moved from math104:hw7 to math104-f21:hw7 |
||
|---|---|---|---|
| Line 50: | Line 50: | ||
| We know | We know | ||
| - | $$ \overline{E^c} = \bigcap \{ K \mid K \In X \text{is closed}, E^c \In K \} = \bigcap \{ K \mid K \In X \text{is closed}, K^c \In E \} = \bigcap \{ K \mid K^c \In X \text{is open}, K^c \In E \} $$ | + | $$ \overline{E^c} = \bigcap \{ K \mid K \In X \text{ is closed}, E^c \In K \} = \bigcap \{ K \mid K \In X \text{ is closed}, K^c \In E \} = \bigcap \{ K \mid K^c \In X \text{ is open}, K^c \In E \} $$ |
| and | and | ||
| - | $$ E^o = \bigcup \{ F \mid F \In X \text{is open}, F \In E \} $$ | + | $$ E^o = \bigcup \{ F \mid F \In X \text{ is open}, F \In E \} $$ |
| Hence | Hence | ||
| - | $$ (E^o)^c = \bigcap \{ F^c \mid F \In X \text{is open}, F \In E \} = \bigcap \{ K \mid K^c \In X \text{is open}, K^c \In E \} = \overline{E^c} $$ | + | $$ (E^o)^c = \bigcap \{ F^c \mid F \In X \text{ is open}, F \In E \} = \bigcap \{ K \mid K^c \In X \text{ is open}, K^c \In E \} = \overline{E^c} $$ |
| Line 61: | Line 61: | ||
| Optional. Let $(X, d)$ be a metric space, $k \geq 1$ be an integer. Let $Conf_k(X) = \{ S \In X, |S|=k\}$, i.e., an element in $Conf_k(X)$ is subset | Optional. Let $(X, d)$ be a metric space, $k \geq 1$ be an integer. Let $Conf_k(X) = \{ S \In X, |S|=k\}$, i.e., an element in $Conf_k(X)$ is subset | ||
| + | See [[https:// | ||