User Tools

Site Tools


math104-f21:midterm1-review

This is an old revision of the document!


Midterm 1: Review

In the first part of this course, we covered the construction of real number, and some results about limit. Here is a list of key concepts

  • The numbers $\N, \Z, \Q$.
  • The axioms of field, an example of finite field $\F_5$.
  • The order relation, and ordered set. upper bound, lower bound. The least upper bound property.
  • $\R$ as equivalence classes of Cauchy sequences in $\Q$. Prove many familiar operations and properties of $\R$.
  • $\R$ has least upper bound property. (hence $\sup$ and $\inf$ of bounded subset in $\R$ exists in $\R$)
  • Sequences in $\R$, notion of convergence
  • Monotone bounded sequences are convergent (for increasing sequence, the $\lim a_n = \sup\{a_n: n \in \N \}$; for decreasing one, $\lim a_n = \inf \{a_n: n \in \N\}$.
  • lim-sup and lim-inf. The “epsilon of room” philosophy.
  • Thm: Cauchy sequences are convergent.
  • Limit Points, 3 equivalent definitions

Sample Problems

Midterm will have 3 of such following questions.

True or False? If true, prove your result; if false, give a counter example.

  1. Let $(a_n)$ be a Cauchy sequence of irrational numbers, then its limit has to be an irrational number.
  2. Let $S$ be an ordered set, then any non-empty finite subset $E \In S$ has a least upper bound.
  3. If $x$ is a limit point of sequence $(a_n)$, then there exists one $n \in \N$, such that $a_n = x$.
  4. If $(a_n)$ is a sequence bounded above, and $L = \limsup(a_n)$, then for any $\epsilon > 0$, there exists an integer $N > 0$, such that $a_n < L + \epsilon$.
  5. Let $(a_n)$ be a bounded sequence in $\R$. Let $A_n = \sup \{a_m : 0 \leq m \leq n \}$, then $\lim A_n = \limsup a_n$
  6. Let $(a_n)$ and $(b_n)$ be convergent sequences with the same limit $x$. And choose any function $f: \N \to \{0,1\}$. We define a new sequence, by mixing $a_n$ and $b_n$ $$c_n = \begin{cases} a_n & \text{if } f(n) = 0 \cr b_n & \text{ if } f(n) = 1 \end{cases} $$ Then, $c_n$ converges to $x$.
  7. If $(a_n)$ and $(b_n)$ are Cauchy sequence in $\R$, and they satisfy that $\lim(a_n b_n) = 1$, then $\lim a_n \neq 0$.
  8. If $(a_n)$ is a sequence of positive real numbers, for $n \geq 1$, and $A_n = (a_1 + \cdots + a_n) / n$, show that if $a_n$ is convergent then $A_n$ is convergent. Give an example where $A_n$ is convergent, but $a_n$ is not convergent.
  9. Is there a sequence $(a_n)$, where $|a_n - a_{n-1}|$ is monotone decreasing, but $(a_n)$ is not convergent?
math104-f21/midterm1-review.1631940480.txt.gz · Last modified: 2021/09/17 21:48 by pzhou