User Tools

Site Tools


math105-s22:hw:hw8

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math105-s22:hw:hw8 [2022/03/11 20:46]
pzhou created
math105-s22:hw:hw8 [2022/03/11 20:50] (current)
pzhou
Line 8: Line 8:
   * optional: if we use $\| - \|_{max}$ norm on $\R^n$, how to compute the operator norm $\|T\|$?    * optional: if we use $\| - \|_{max}$ norm on $\R^n$, how to compute the operator norm $\|T\|$? 
  
-4. Read about Hölder inequality and Minkowski inequality. Can you come up with an elementary prove for +4. Read about Hölder inequality and Minkowski inequality. In the simplest setting, we have 
-  * (Hölder inequality), for $p,q \geq 1$ that $1/q+1/p=1$, we have $(\sum_{i=1}^n |x_i y_i|) \leq (\sum_i |x_i|^p)^{1/p} (\sum_i |y_i|^q)^{1/q} $ +  * (Hölder inequality), for $p,q \geq 1$ that $1/q+1/p=1$, we have  
-  * (Minkowski inequality) for any $p\geq 1$, $(\sum_{i=1}^n |x_i + y_i|^p)^{1/p} \leq (\sum_i |x_i|^p)^{1/p} +  (\sum_i |y_i|^q)^{1/q} $  +$$ (\sum_{i=1}^n |x_i y_i|) \leq (\sum_i |x_i|^p)^{1/p} (\sum_i |y_i|^q)^{1/q} $
 +  * (Minkowski inequality) for any $p\geq 1$, $$(\sum_{i=1}^n |x_i + y_i|^p)^{1/p} \leq (\sum_i |x_i|^p)^{1/p} +  (\sum_i |y_i|^p)^{1/p} $
  
 +Read about the proof (in wiki, or any textbook about functional analysis, say Folland). Why it works? 
  
  
  
math105-s22/hw/hw8.1647060382.txt.gz · Last modified: 2022/03/11 20:46 by pzhou