User Tools

Site Tools


math121a-f23:october_30_monday

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Last revision Both sides next revision
math121a-f23:october_30_monday [2023/10/29 12:06]
pzhou created
math121a-f23:october_30_monday [2023/10/29 12:17]
pzhou
Line 53: Line 53:
 $$ y(t) = y(0) + \int_0^t y'(s) ds =  \int_0^t 1 ds = t. $$ $$ y(t) = y(0) + \int_0^t y'(s) ds =  \int_0^t 1 ds = t. $$
  
-==== Ex ====+ 
 +===== The Green's function ===== 
 + 
 +Let $P(D)$ be a differential operator, where $D=d/dt$ and $P(x)$ is a degree $n$ polynomial. Suppose we are facing an equation of the type 
 +$$ P(D) y(t) = g(t) $$ 
 +with some homogeneous boundary condition (meaning the function $y(t)$ vanishes on the boundary of the domain).  
 + 
 +Suppose we know the solution for  
 +$$ P(D) G(t; s) = \delta(t-s). $$ 
 + 
 +Then, we can solve the original equation  by doing an integral 
 +$$ y(t) = \int G(t; s) g(s) ds. $$ 
 +Indeed, we have 
 +$$ P(D) y(t) = \int P(D) G(t; s) g(s) ds = \int \delta(t-s)g(s) ds = g(t). $$ 
 + 
 +==== Ex 4 ==== 
 +Consider the domain being $[0,\infty)$, and we have 
 +$$ d/dt y(t) = g(t), \quad g(t)=1_{[1,2]}(t). y(0) = 0$$ 
 +In this case, we can first solve for the Green's function 
 +$$ d/dt G(t; s) = \delta(t-s), \quad G(0;s)=0$$ 
 +we get $ G(t;s) = 1 $ for $t>s$, and 0 else.  
 + 
 +Thus, we can get get 
 +$$ y(t) = \int g(s) G(t;s) ds = \int_{1}^2 1_{t>s} ds. $$ 
 +if $t>2$, then $y(t) = \int_1^2ds = 1$, if $1<t<2$, we get $\int_1^t ds = (t-1)$. if $t<1$, we get $y(t)=0$.  
 + 
 + 
 + 
 + 
 +===== More examples about delta function ===== 
 Consider the equation that, for $x \in [0,2]$ Consider the equation that, for $x \in [0,2]$
 $$ (d/dx)^2 y(x) + y(x) = \delta (x-1) $$ $$ (d/dx)^2 y(x) + y(x) = \delta (x-1) $$
-with boundary condition $y(0) = y(2) = 0. $$+with boundary condition $y(0) = y(2) = 0. $
  
 If we integrate this equation over the interval $(1-\epsilon, 1+\epsilon)$, across the location of the delta function, we find that If we integrate this equation over the interval $(1-\epsilon, 1+\epsilon)$, across the location of the delta function, we find that
 $$ \lim_{\epsilon} y'(1+\epsilon) - y'(1-\epsilon) = 1 $$ $$ \lim_{\epsilon} y'(1+\epsilon) - y'(1-\epsilon) = 1 $$
-(the term $\int_{((1-\epsilon, 1+\epsilon)} y(x) dx = O(\epsilon) \to 0$)+(the term $\int_{(1-\epsilon, 1+\epsilon)} y(x) dx = O(\epsilon) \to 0$)
 hence we had a discontinuity of the slope of $y(x)$ when $x=1$.  hence we had a discontinuity of the slope of $y(x)$ when $x=1$. 
 We may write down the general solution over the interval $(0,1)$ that vanishes on $x=0$ We may write down the general solution over the interval $(0,1)$ that vanishes on $x=0$
Line 71: Line 101:
 $$ a \sin(1) = b \sin(-1), \quad a\cos(1) - b \cos(-1) = 1 $$ $$ a \sin(1) = b \sin(-1), \quad a\cos(1) - b \cos(-1) = 1 $$
 so $a=-b$ and $a = 1 / (2 \cos(1))$.  so $a=-b$ and $a = 1 / (2 \cos(1))$. 
- 
- 
- 
-===== The (retarded) Green's function ===== 
- 
- 
- 
  
  
math121a-f23/october_30_monday.txt · Last modified: 2023/10/29 12:18 by pzhou