User Tools

Site Tools


math121b:02-07

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
math121b:02-07 [2020/02/07 00:02]
pzhou
math121b:02-07 [2020/02/07 00:04]
pzhou
Line 37: Line 37:
 $$ I = \int \sum_i \d_{x_i} f \cdot \d_{x_i} \varphi dx_1 \cdots d x_n = \int (- \sum_i \d_{x_i}^2 f) \cdot \varphi dx_1 \cdots d x_n $$ $$ I = \int \sum_i \d_{x_i} f \cdot \d_{x_i} \varphi dx_1 \cdots d x_n = \int (- \sum_i \d_{x_i}^2 f) \cdot \varphi dx_1 \cdots d x_n $$
 where we used integration by part. Thus, we get  where we used integration by part. Thus, we get 
-$$ \Delta f(x) = \sum_i\d_{x_i} ^2 f(x) $$+$$ \Delta f(x) = \sum_i\d_{x_i}^2 f(x) $$ 
 +So this definition makes sense. 
  
 ** (2) If we use curvilinear cooridnate **, then we claim that  ** (2) If we use curvilinear cooridnate **, then we claim that 
-$$ d Vol_g(u) = \sqrt{|g|} du_1\cdots du_n $$+$$ d Vol_g(u) = \sqrt{|g|} du_1\cdots du_n \tag{1}$$
 and that and that
-$$ (df, d\varphi)_g = \sum_{i,j} g^{ij} \d_{u_i} f \d_{u_j} \varphi $$. +$$ (df, d\varphi)_g = \sum_{i,j} g^{ij} \d_{u_i} f \d_{u_j} \varphi \tag{2}$$. 
  
 Given these two claim, we get  Given these two claim, we get 
math121b/02-07.txt · Last modified: 2020/02/07 01:36 by pzhou