User Tools

Site Tools


math121b:02-10

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math121b:02-10 [2020/02/09 23:34]
pzhou
math121b:02-10 [2020/02/22 18:03] (current)
pzhou
Line 1: Line 1:
 ====== 2020-02-10, Monday ====== ====== 2020-02-10, Monday ======
-We first finish up the derivation of Laplacian last time. See the lecture note [[02-07]]. Then, we introduce two vector operations, divergence and curl. Finally, we give a summary of the mathematical treatment of tensor analysis. +$$\gdef\div{\text{div}} \gdef\vol{\text{Vol}} \gdef\b{\mathbf} \gdef\d{\partial}$$
  
-Then, we will follow Boas 10.9 and 10.10, to introduce the physic-engineer notations: the nabla operator $\gdef\b{\mathbf} \b \nabla$.  
  
-===== Differential of a function =====+We first finish up the derivation of Laplacian last time. See the lecture note [[02-07]]. Then, we review three concepts $df, \nabla f, \nabla \cdot \b V$ ($\nabla \times \b V$ is a bit special for $\R^3$).  
 + 
 + 
 +Then, we will follow Boas 10.8 and 10.9, to reconcilliate the math notation and physics notations.  
 + 
 + 
 + 
 +===== Differential of a function is a 1-form (covector field)=====
 In Cartesian coordinate, the differential of a function $f$ is  In Cartesian coordinate, the differential of a function $f$ is 
-$$ df = \sum_i \frac{\df }{\d x_i} dx_i. $$+$$ df = \sum_i \frac{\d f }{\d x_i} dx_i. $$
  
 In general coordinate $(u_1, \cdots, u_n)$, the differential of a function $f$ is  In general coordinate $(u_1, \cdots, u_n)$, the differential of a function $f$ is 
-$$ df =  \sum_i \frac{\df }{\d u_i} d u_i. $$+$$ df =  \sum_i \frac{\d f }{\d u_i} d u_i. $$
  
-You can specify the differential of a function directly: $df$ at a point $p \in \R^n$is a linear function on $T_p \R^n$: it sends an element $\b \in T_p \R^n$ to $\b v(f)$ the directional derivative of $f$ along the vector $\b v$. +You can specify the differential of a function directly: $df$ at a point $p \in \R^n$ is a linear function on $T_p \R^n$$df(p) \in (T_p \R^n)^*$. It does the following 
 +$$ df(p) : \b v_p \mapsto  \b v_p(f), \quad \b v_p \in T_p \R^n $
 +where $\b v_p(f)$ is the directional derivative of $f$ along $\b v_p$. 
  
 ===== Gradient of a function (is a vector field) ===== ===== Gradient of a function (is a vector field) =====
 In Cartesian coordinate, the gradient of a function is  In Cartesian coordinate, the gradient of a function is 
-$$ \gdef\grad{\text{ grad } } \grad f = \sum_i $$+$$ \gdef\grad{\text{ grad } }  \grad f = \sum_i \frac{\d f}{\d x_i} \frac{\d }{\d x_i}. $$
  
 +In general coordinate, the gradient of a function is more complicated
 +$$ \grad f = \sum_{i,j} g^{ij} \frac{\d f}{\d u_i} \frac{\d }{\d u_j}, $$
 +where $g^{ij}$ is the entry of the inverse matrix of the matrix $[g_{kl}]$. And it just happens that, for Cartesian coordinate, $g^{ij} = \delta_{ij}$. 
  
 +Note that $g_{ij}$ and $g^{ij}$ depends on the coordinate system. 
 +$$ g_{ij} = g(\frac{\d}{\d u_i}, \frac{\d}{\d u_j}), \quad g^{ij} = g^*(d u_i, d u_j). $$
 +Beware that $\nabla u_i \neq \frac{\d}[\d u_i}$. 
 +
 +** Notation ** $$ \nabla f = \grad f.$$ 
  
 ===== Divergence of a Vector field (is a function) ===== ===== Divergence of a Vector field (is a function) =====
Line 27: Line 43:
  
 The divergence of $\b V$ is a function on $\R^n$,  The divergence of $\b V$ is a function on $\R^n$, 
-$$ div(\b V) = \sum_{i=1}^n \d_i( V^i ) $$+$$ \div(\b V) = \sum_{i=1}^n \d_i( V^i ) $$
 recall that $V^i$ is a function on $\R^n$, and $\d_i$ is taking the partial derivative with respect to $x_i$.  recall that $V^i$ is a function on $\R^n$, and $\d_i$ is taking the partial derivative with respect to $x_i$. 
 +
 +** Notation ** $$ \nabla \cdot \b V = \div (\b V).$$ 
 +
  
 **What does divergence mean?** Geometrically, it measure the relative change-rate of the volume of an infinitesimal cube situated at point $p$. Suppose $\Phi^t: \R^n \to \R^n$ is the flow generated by $\b V$ (every point moves as dictated by $\b V$). And let $C= C(p, \epsilon)$ be a cube of side-length $\epsilon$, center at $p$.  **What does divergence mean?** Geometrically, it measure the relative change-rate of the volume of an infinitesimal cube situated at point $p$. Suppose $\Phi^t: \R^n \to \R^n$ is the flow generated by $\b V$ (every point moves as dictated by $\b V$). And let $C= C(p, \epsilon)$ be a cube of side-length $\epsilon$, center at $p$. 
 Then, we have the geometrical interpretation as Then, we have the geometrical interpretation as
-$$ \gdef\div{\text{div}} \gdef\vol{\text{Vol}} \div(\b V) = \lim_{\epsilon \to 0} \frac{1}{\vol(C)} \frac{d \vol(\Phi^t(C))}{dt} \vert_{t=0}. $$+$$ \div(\b V) = \lim_{\epsilon \to 0} \frac{1}{\vol(C)} \frac{d \vol(\Phi^t(C))}{dt} \vert_{t=0}. $$
 That is why, if $S \subset \R^n$ is an open domain, we can compute the change-rate of the volume of $S$ by  That is why, if $S \subset \R^n$ is an open domain, we can compute the change-rate of the volume of $S$ by 
 $$ \frac{d \vol(\Phi^t(S)) } {dt}\vert_{t=0} = \int_{S} \div(\b V)(\b x) \, d \vol(\b x). $$ $$ \frac{d \vol(\Phi^t(S)) } {dt}\vert_{t=0} = \int_{S} \div(\b V)(\b x) \, d \vol(\b x). $$
  
-If we are given curvilinear coordinate, how to compute the divergence? +** In curvilinear coordinate. **  
 +The formula for computing the divergence is the following, suppose $\b V = \sum_i V^i \frac{\d }{\d u_i}$, then 
 +$$ \div (\b V) = \sum_{i=1}^n \frac{1}{\sqrt{|g|}} \frac{\d (\sqrt{|g|} V^i)}{\d u_i} $$ 
 + 
 +The reason we have the above formula is that , for any compactly supported function $\varphi$ ((compactly supported function on $\R^n$ is a function that vanishes outside a sufficently large ball. )), we have  
 +$$ \int_{\R^n} (\nabla \cdot \b V)\,  \varphi\, \sqrt{|g|} du_1\cdots d u_n = \int_{\R^n} \b V \cdot (\nabla \varphi)\, \sqrt{|g|} du_1\cdots d u_n $$ 
 + 
 +====== Back to Boas ====== 
 + 
 +===== Section 10.8 ===== 
 +For Cartesian coordinate, we have basis vectors $\b i, \b j, \b k$.  
 + 
 +For spherical coordinate, we have **unit** basis vectors $\b e_r, \b e_\theta, \b e_\phi$, and corresponding coordinate basis vectors $\b a_r, \b a_\theta, \b a_\phi$ (not unit length). These $\b a_n$ corresponds to our coordinate basis tangent vectors:  
 +$$ \b a_r = \frac{\d }{\d r}, \quad \b a_\theta = \frac{\d }{\d \theta}, \cdots $$ 
 + 
 +See Example 2 on page 523, for how to consider a general curvilinear coordinate $(x_1, x_2, x_3)$ on $\R^3$.  
 + 
 +The notation $d \b s$ corresponds to  
 +$$ \sum_{i=1}^n \frac{\d }{\d x_i} \otimes d x_i \in (T_p \R^n) \otimes (T_p \R^n)^*. $$ 
 +An element $T$ in $V \otimes V^*$ can be viewed as a linear operator $V \to V$, by inserting $v \in V$ to the second slot of $T$. In this sense $d \b s$ is the identity operator on $T_p \R^n$. You might have seen in Quantum mechanics the bra-ket notation $1 = \sum_n | n \rangle \otimes \langle n |$ (( $\otimes$ sometimes omitted as usual in physics.)) It is the same thing, where $| n \rangle \in V$ forms a basis and $ \langle n | \in V^*$ are the dual basis.   
 + 
 +** Orthogonal coordinate system (ortho-curvilinear coordinate) **, the matrix $g_{ij}$ is diagonal, with entries $h_i^2$ (not to be confused with our notation for dual basis). This is  
 +the case we will be considering mainly.  
 + 
 +===== Section 10.9 ===== 
 +Suppose we have orthogonal coordinate system $(x_1, x_2, x_3)$, and **unit** basis vectors $\b e_i$, we have 
 +$$ \b a_i = \frac{\d }{\d x_i} = h_i \b e_i. $$ 
 + 
 +Given a vector field $V$, we write its component in the basis of $\b e_i$ (warning! this is not our usual notation, we usual write with basis $\frac{\d }{\d x_i}$)  
 +$$ \b V = \sum_i V^i \b e_i $$.  
 + 
 +==== Divergence. ==== 
 +Try to do problem 1.  
 + 
 +An important property is the "Leibniz rule" 
 +$$ \b \nabla \cdot (f \b V) = \b \nabla f \cdot \b V + f  \b \nabla  \cdot \b V.$$ 
 + 
 +==== Curl ==== 
 +To compute the curl, we note the following rule 
 +$$ \b \nabla \times (f \b V) = \b \nabla(f) \times \b V + f \b \nabla \times \b V $$ 
 +and  
 +$$ \b \nabla \times \nabla f = 0 $$.  
 + 
 +In the ortho-curvilinear coordinate, we can use the above rule to get a formula for the curl. I will not test on the curl operator in the orthocurvilinear case.  
 + 
 + 
 + 
 + 
  
  
  
math121b/02-10.1581320049.txt.gz · Last modified: 2020/02/09 23:34 by pzhou