User Tools

Site Tools


math121b:03-20

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math121b:03-20 [2020/03/19 22:50]
pzhou
math121b:03-20 [2020/03/19 23:42] (current)
pzhou
Line 18: Line 18:
  
 And to leading order, we can replace $f(z)$ by its value at the critical point.  And to leading order, we can replace $f(z)$ by its value at the critical point. 
 +
 +** Example **
 +Physicists ususally use $1/\hbar$ as $\lambda$. Here are some sample computation. 
 +$$ \int_\R e^{-\frac{1}{\hbar} x^2/2} dx = \sqrt{2\pi \hbar} $$
 +$$ \int_\R x e^{-\frac{1}{\hbar} x^2/2} dx = 0 $$
 +$$ \int_\R x^2 e^{-\frac{1}{\hbar} x^2/2} dx = \hbar^{3/2} \int_\R u^2 e^{- u^2/2} du = \hbar^{3/2} \sqrt{2\pi} $$
 +The point is that, having $x^2$ in the pre-factor will make the integral much smaller (indeed, the $x^2$ factor is killing the peak of $e^{-x^2/(2\hbar)}$ at $x=0$.)
 +
 +Another trick to compute the last equality is that
 +$$ \int_\R x^2 e^{- \lambda x^2/2} dx = -2 \frac{d}{d\lambda} \int_\R  e^{- \lambda x^2/2} dx = -2 \frac{d}{d\lambda} \sqrt{2\pi / \lambda} = \sqrt{2\pi} \lambda^{-3/2} $$
 +
 ---- ----
  
 Now, back to our Bessel function. We let $x/2$ be the large parameter $\lambda$. Then we have phase function  Now, back to our Bessel function. We let $x/2$ be the large parameter $\lambda$. Then we have phase function 
 $$ S(u) = u - 1/u. $$ $$ S(u) = u - 1/u. $$
-  - Critical points of $S(u)$. This is the place where $S'(u)$ vanishes. Solve the equation that $$ 0 = S'(u) = 1 + 1/u^2, $$ we get $u = \pm i$+  - Critical points of $S(u)$. This is the place where $S'(u)$ vanishes. Compute $$ S'(u) = 1 + 1/u^2, \quad S"(u) = -2/u^3. $$  We get $$S'(u) = 0 \leadsto u = \pm i. $$ 
   - Massage our contour so that they pass through the critical point. Yes, it does, since our contour is the unit circle $|u|=1$.    - Massage our contour so that they pass through the critical point. Yes, it does, since our contour is the unit circle $|u|=1$. 
   - Make sure it passes the critical point in the 'right direction'. Now, we need to do Taylor expansion of the phase function $S(u)$ near $\pm i$.    - Make sure it passes the critical point in the 'right direction'. Now, we need to do Taylor expansion of the phase function $S(u)$ near $\pm i$. 
  
  
-Consider the critical point $u_0=i$ first. For $$u = u_0 + v,$$ we have $$ S(u_0 + v) \approx S(u_0) + (1/2) S''(u_0) v^2 = (i - 1/i) + (1/2) (-1/i^3) v^2 = (2i) - (i/2) v^2 $$ The constant term is $2i$, we can do nothing about it, just leave it there. The quadratic term is $ - (i/2) v^2$. Recall $v = u - u_0$, as $u$ passes through $u_0$, $v$ passes through $0$. We want to choose the direction in which $v$ passes through $0$, so that $-(i/2) v^2$ remains real, and has a local maximum at $v=0$. So we parametrize $$ v = s e^{- i \pi /4}, $$ for $s$ real, that way $$  -(i/2) v^2 = - (1/2) s^2. $$ So the contour $C$ should passes through $i$, in the direction $3\pi/4$( or $-\pi/4$), depending on which way you look).  +Consider the critical point $u_0=i$ first. For $$u = u_0 + v,$$ we have $$ S(u_0 + v) \approx S(u_0) + (1/2) S''(u_0) v^2 = (i - 1/i) + (1/2) (-2/i^3) v^2 = (2i) - i v^2 $$ The constant term is $2i$, we can do nothing about it, just leave it there. The quadratic term is $ - i v^2$. Recall $v = u - u_0$, as $u$ passes through $u_0$, $v$ passes through $0$. We want to choose the direction in which $v$ passes through $0$, so that $- i v^2$ remains real, and has a local maximum at $v=0$. So we parametrize $$ v = s e^{- i \pi /4}, $$ for $s$ real, that way $$  - i v^2 = - s^2. $$ So the contour $C$ should passes through $i$, in the direction $3\pi/4$( or $-\pi/4$), depending on which way you look).  
          
          
 Thus, the contribution for $u_0 = i$ is Thus, the contribution for $u_0 = i$ is
 $$ \begin{aligned}  $$ \begin{aligned} 
-I_1 &\approx \int_{+\infty}^{-\infty} (i)^{-1-n} e^{(x/2) [(2i) - (i/2) v^2]} dv \cr +I_1 &\approx (2\pi i)^{-1}  \int_{+\infty}^{-\infty} (i)^{-1-n} e^{(x/2) [(2i) - i v^2]} dv \cr 
-& \approx (i)^{-1-n} e^{i x} \int_{+\infty}^{-\infty} e^{-(1/2) s^2} d [s e^{- i \pi /4}] \cr +=(2\pi i)^{-1} (i)^{-1-n} e^{i x} \int_{+\infty}^{-\infty} e^{-(x/2) s^2} d [s e^{- i \pi /4}] \cr 
-& \approx (-1) (i)^{-1-n} e^{i x - i \pi /4} \int_{-\infty}^{+\infty} e^{-(1/2) s^2} ds \cr += (2\pi i)^{-1} (-1) (i)^{-1-n} e^{i x - i \pi /4} \int_{-\infty}^{+\infty} e^{-(x/2) s^2} ds \cr 
-& \approx (-1) (i)^{-1-n} e^{i x - i \pi /4} \sqrt{2\pi} += (2\pi i)^{-1} (-1)  e^{i x - i \pi /4 - (n+1) i \pi /2 } \sqrt{2\pi/x
 \end{aligned} $$  \end{aligned} $$ 
  
 Similarly, we can compute the contribution at $u_0 = -i$, we get Similarly, we can compute the contribution at $u_0 = -i$, we get
 $$ \begin{aligned}  $$ \begin{aligned} 
-I_2 &\approx \int_{-\infty}^\infty (-i)^{-1-n} e^{(x/2) [(-2i) + (i/2) v^2]} dv \cr +I_2 &\approx (2\pi i)^{-1} \int_{-\infty}^\infty (-i)^{-1-n} e^{(x/2) [(-2i) + i v^2]} dv \cr 
-& \approx (-i)^{-1-n} e^{-i x} \int_{-\infty}^{+\infty} e^{-(1/2) s^2} d [s e^{ i \pi /4}] \cr +& \approx (2\pi i)^{-1} (-i)^{-1-n} e^{-i x} \int_{-\infty}^{+\infty} e^{-(x/2)s^2} d [s e^{ i \pi /4}] \cr 
-& \approx (-i)^{-1-n} e^{-i x + i \pi /4} \int_{-\infty}^{+\infty} e^{-(1/2) s^2} ds \cr +& \approx (2\pi i)^{-1} (-i)^{-1-n} e^{-i x + i \pi /4} \int_{-\infty}^{+\infty} e^{-(x/2) s^2} ds \cr 
-& \approx (-i)^{-1-n} e^{-i x + i \pi /4} \sqrt{2\pi} +& \approx  (2\pi i)^{-1}  e^{-i x + i \pi /4 + (n+1) i \pi /2} \sqrt{2\pi/x
 \end{aligned} $$  \end{aligned} $$ 
 +
 +Finally, we can add up the two contributions to get
 +$$ J_n(x) \approx I_1 + I_2 =  \sqrt{2/\pi x} \sin(- x +  \pi /4 + (n+1)  \pi /2) =  \sqrt{2/\pi x} \cos(x - (2n+1)  \pi /4)$$
 +where the last step uses trig identity $\sin(A) = \cos(\pi/2 - A)$, so that we agree with Boas. 
 +
 +Here is a picture of the 'ideal contour', where the phase $S(u)$ has 'constant phase'
 +{{ :math121b:steepest_descent_method.png?nolink&400 |}}
 +It is made with [[https://www.wolframalpha.com/input/?i=contourplot%5B+Im+%5B%28x%2BI+y%29+-+1%2F%28x%2BI+y%29%5D+%2C+%7Bx%2C+-2%2C2%7D%2C+%7By%2C+-2%2C2%7D%5D | Wolfram Alpha.]] 
 +
 +
 +
 +------
 +
 +This finishes Chapter 12. I did not talk about the Airy function, Hermite function, Laguerre functions. I will leave those 
 +as reading materials, and post homework questions about them. 
  
  
math121b/03-20.1584683432.txt.gz · Last modified: 2020/03/19 22:50 by pzhou