User Tools

Site Tools


math121b:04-03

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
math121b:04-03 [2020/04/02 23:04]
pzhou
math121b:04-03 [2020/04/03 09:55]
pzhou
Line 33: Line 33:
  
 If $\lambda_r < 0$, say $\lambda_r = -k^2$ for $k>0$, then   If $\lambda_r < 0$, say $\lambda_r = -k^2$ for $k>0$, then  
-$$ R(r) = J_n(\sqrt{-\lambda_r} r) = J_n(kr) $$ +$$ R( r) = J_n(\sqrt{-\lambda_r} r) = J_n(kr) $$ 
-$R(r) will oscillate as $r$ increase. +$R( r) will oscillate as $r$ increase. 
  
 If $\lambda_r > 0$, say $\lambda_r = k^2$ for $k>0$, then we will take  If $\lambda_r > 0$, say $\lambda_r = k^2$ for $k>0$, then we will take 
-$$ R(r) =  I_n(kr) = i^n J_n(i k r) $$+$$ R( r) =  I_n(kr) = i^n J_n(i k r) $$
 where $I_n(kr)$ is the 'hyperbolic' Bessel function. $R(r)$ looks like expoential function, with no oscillation.  where $I_n(kr)$ is the 'hyperbolic' Bessel function. $R(r)$ looks like expoential function, with no oscillation. 
  
Line 61: Line 61:
  
 ** Case 1: Bottom and Side boundary value = 0. $u(r,\theta,z=1)$ is given ** ** Case 1: Bottom and Side boundary value = 0. $u(r,\theta,z=1)$ is given **
-Since $R(r)$ will have a zero at $r=1$, we should have $\lambad_r = -k^2 < 0$, and+Since $R( r)$ will have a zero at $r=1$, we should have $\lambda_r = -k^2 < 0$, and
 $$ u_{k,n}(r, \theta, z) = J_n(kr) \cos(n\theta) \sinh(k z), \quad J_n(kr) \sin(n\theta) \sinh(k z)$$ $$ u_{k,n}(r, \theta, z) = J_n(kr) \cos(n\theta) \sinh(k z), \quad J_n(kr) \sin(n\theta) \sinh(k z)$$
 For each $n$, we need to choose those $k$ such that $J_n(k 1) = 0$, hence the choice of $k$ is discrete as well.  For each $n$, we need to choose those $k$ such that $J_n(k 1) = 0$, hence the choice of $k$ is discrete as well. 
math121b/04-03.txt · Last modified: 2020/04/03 10:39 by pzhou