User Tools

Site Tools


math121b:04-06

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
math121b:04-06 [2020/04/06 07:28]
pzhou
math121b:04-06 [2020/04/06 10:24] (current)
pzhou [Steady State temperature distribution inside a unit ball]
Line 50: Line 50:
 Then the solulution for $u$ is obtained by setting $\lambda = \lambda_r=0$ Then the solulution for $u$ is obtained by setting $\lambda = \lambda_r=0$
 $$ u(r, \theta, \phi)  = \sum_{l=0}^\infty \sum_{m=0}^l r^l [a_{l m} \cos(m\phi) + b_{l m} \sin(m \phi) ] P_l^m(\cos \theta).  $$ $$ u(r, \theta, \phi)  = \sum_{l=0}^\infty \sum_{m=0}^l r^l [a_{l m} \cos(m\phi) + b_{l m} \sin(m \phi) ] P_l^m(\cos \theta).  $$
 +
 +To obtain the coefficients $a_{lm}, b_{lm}$ from $f(\theta, \phi)$, we uses orthogonality of these functions $P_l^m(\cos \theta) \cos(m \phi), P_l^m(\cos \theta) \sin(m \phi)$ on the two sphere with volume form $\sin \theta d\theta d\phi$. For example, we claim that, if $(l, m) \neq (l', m')$, then 
 +$$ \int_{\phi = 0}^{2\pi} \int_{\theta=0}^\pi P_l^m(\cos \theta) \cos(m \phi) P_{l'}^{m'}(\cos \theta) \cos(m' \phi) \sin \theta d\theta d\phi = 0$$
 +Indeed, integrating $d\phi$, we see that if $m \neq m'$ the result is zero; if $m=m'$ but $l \neq l'$, then we use the orthogonality of associated Legendre functions (see section 12.10 of Boas), to show that the integral is zero. 
  
  
math121b/04-06.1586183311.txt.gz · Last modified: 2020/04/06 07:28 by pzhou