This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision | |||
|
math121b:ex3 [2020/02/20 14:36] pzhou |
math121b:ex3 [2020/02/20 15:02] (current) pzhou |
||
|---|---|---|---|
| Line 62: | Line 62: | ||
| $$ \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \cr 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \cr 1 \end{pmatrix} = 7 $$ | $$ \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \cr 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \cr 1 \end{pmatrix} = 7 $$ | ||
| * $ \| e_1 - 2 e_2 \|^2 = \begin{pmatrix} 1 & -2 \end{pmatrix} \begin{pmatrix} 3 & 1 \cr 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \cr -2 \end{pmatrix} = 7 $ | * $ \| e_1 - 2 e_2 \|^2 = \begin{pmatrix} 1 & -2 \end{pmatrix} \begin{pmatrix} 3 & 1 \cr 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \cr -2 \end{pmatrix} = 7 $ | ||
| - | * $P(e_1, e_2) = \sqrt{\det(g)} = \sqrt{4} = 2$ | + | * $P(e_1, e_2) = \sqrt{\det(g)} = \sqrt{5}$ |
| * Can you find two vectors $v_1, v_2 \in \R^2$, such that $v_1, v_2$ has the same properties as $e_1, e_2$? $v_1 = (\sqrt{3}, 0), v_2 = (\sqrt{2} \cos\theta, \sqrt{2} \sin \theta)$ where $\cos\theta = \frac{1}{\sqrt{2} \sqrt{3}}$. We are using the formula | * Can you find two vectors $v_1, v_2 \in \R^2$, such that $v_1, v_2$ has the same properties as $e_1, e_2$? $v_1 = (\sqrt{3}, 0), v_2 = (\sqrt{2} \cos\theta, \sqrt{2} \sin \theta)$ where $\cos\theta = \frac{1}{\sqrt{2} \sqrt{3}}$. We are using the formula | ||
| $$ v \cdot w = \| v \| \|w \| \cos \theta$$ | $$ v \cdot w = \| v \| \|w \| \cos \theta$$ | ||