User Tools

Site Tools


math121b:midterm2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math121b:midterm2 [2020/04/10 19:23]
pzhou created
math121b:midterm2 [2020/04/19 23:06] (current)
pzhou [3. Bessel Function (30 points)]
Line 19: Line 19:
 1. Compute $P_3(x)$ using Rodrigue formula. (5 points) 1. Compute $P_3(x)$ using Rodrigue formula. (5 points)
  
-2. Prove the recursion relation 5.8(c) (10 points)+2. Prove the recursion relation 5.8( c) (10 points)
 $$ P_l'(x) - xP_{l-1}'(x) = l P_{l-1}(x) $$ $$ P_l'(x) - xP_{l-1}'(x) = l P_{l-1}(x) $$
 using the generating function  using the generating function 
 $$\Phi(x,h) = \sum_{n=0}^\infty h^n P_n(x) = \frac{1}{\sqrt{1 - 2 x h + h^2} } $$ $$\Phi(x,h) = \sum_{n=0}^\infty h^n P_n(x) = \frac{1}{\sqrt{1 - 2 x h + h^2} } $$
  
-3. Compute $\int_{-1}^1 x^n P_n(x) dx$ in the following steps: ( 10 points)+3. Compute $\int_{-1}^1 x^n P_n(x) dx$( 10 points
 + 
 +Hint:( you don't have to use these hints)
   * Find the constant $c$, such that $P_n(x) = c x^n + \z{ lower order terms}$. (try Rodrigue formula)   * Find the constant $c$, such that $P_n(x) = c x^n + \z{ lower order terms}$. (try Rodrigue formula)
   * Show that $\int_{-1}^1 P_n(x)^2  dx = \int_{-1}^1 c x^n P_n(x) dx$   * Show that $\int_{-1}^1 P_n(x)^2  dx = \int_{-1}^1 c x^n P_n(x) dx$
 +  * Look up $\int_{-1}^1 P_n(x)^2  dx$ in Boas. 
  
  
Line 36: Line 39:
 1. Problem 12.1. (7 points) 1. Problem 12.1. (7 points)
  
-2. Problem 15.6 (7 points)+2. Problem 15.6 (7 points) Making the computer plot is optional. 
  
 3. Problem 19.1 (10 points) 3. Problem 19.1 (10 points)
  
 4. Problem 20.3, 20.6, 20.7 (6 points) 4. Problem 20.3, 20.6, 20.7 (6 points)
 +  * 20.3: $ 4/\pi$
 +  * 20.6: $-1/(2n+1)$. 
 +  * 20.7: $(1/x) e^{i (x - (n+1) \pi /2)} $
  
 ===== 4. Solving PDE with separation of variables (30 points) ===== ===== 4. Solving PDE with separation of variables (30 points) =====
Line 60: Line 66:
 $$ u(0, \theta) = \cos^2(\theta). $$ $$ u(0, \theta) = \cos^2(\theta). $$
  
 +Hint: you may find the following formula useful 
 +$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2 \cos^2 \theta - 1. $$
  
  
math121b/midterm2.1586571827.txt.gz · Last modified: 2020/04/10 19:23 by pzhou