User Tools

Site Tools


math121b:sample-m1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
math121b:sample-m1 [2020/02/21 15:07]
pzhou
math121b:sample-m1 [2020/02/22 18:08]
pzhou [Partial Solution]
Line 46: Line 46:
 $$ $$
 Hence, we have  Hence, we have 
-$$ g(\frac{\d }{\d u} ,\frac{\d }{\d u}) $$+$$ g(\frac{\d }{\d u} ,\frac{\d }{\d u}) =  \left( \frac{\d x}{\d u} \right)^2 + \left( \frac{\d y}{\d u} \right)^2 = \left( \frac{\d y}{\d v} \right)^2 + \left( - \frac{\d x}{\d v} \right)^2= g(\frac{\d }{\d v} ,\frac{\d }{\d v})$$ 
 +and 
 +$$ g(\frac{\d }{\d u} ,\frac{\d }{\d v}) = \frac{\d x}{\d u} \frac{\d x}{\d v} + \frac{\d y}{\d u} \frac{\d y}{\d v} = - \frac{\d x}{\d u} \frac{\d y}{\d u} + \frac{\d y}{\d u} \frac{\d x}{\d u} = 0 $$ 
 +Hence, we have orthogonal coordinate, and furthermore, the length of the two basis vectors are the same 
 +$g_{uu} = g_{vv}$.  
 + 
 +In this problem, we have 
 +$$ x + i y = \cosh(u + iv) $$ 
 +so the above method applies. Another examples is 
 +$$ y = uv , x = (u^2 - v^2)/2 $$ 
 +this is from 
 +$$ x + i y = (u + iv)^2/2.$$  
 + 
 +Of course, one can do the problem without using the above trick. One then do 
 +$$dx = ... du + ... dv, \quad dy = ... du + ... dv$$ 
 +then plug into 
 +$$ ds^2 = dx^2 + dy^2 $$ 
 +to express $ds^2$ using $du$ and $dv$. You should get in the end 
 +$$ ds^2 = (\cosh^2(u)- \cos^2(v)) (du^2 + dv^2) $$ 
 +Or, the factor can be written in different ways, since  
 +$$ \cosh^2(u)- \cos^2(v) = \sinh^2(u) + \sin^2(v) .$$ 
 + 
 +Let $H^2 = \sinh^2(u) + \sin^2(v)$, then we have  
 +$$ g = [g_{ij}] = \begin{pmatrix} H^2 & 0 \cr 0 & H^2 \end{pmatrix} $$ 
 +So we have $g_{ij} = \delta_{ij} H^2, \quad g^{ij} = H^{-2} \delta_{ij}$.  
 + 
 +The volume element is  
 +$$ \sqrt{g} du dv =  (\sinh^2(u) + \sin^2(v)) du dv$ 
 + 
 +The expansion is 
 +$$ \d_u = \d_u(x) \d_x + \d_u(y) \d_y = ... $$ 
 + 
 +The gradient is  
 +$$ grad(f) = H^{-2} \d_u(f) \d_u +  H^{-2} \d_v(f) \d_v =  H^{-2} (2  \d_u +  3 \d_v) $$ 
 + 
 +The divergence of $V$ is  
 +$$ div(V) = H^{-2} \d_u (H^2) = 2 \cosh(u)/\sinh(u) $$  
 +More details: $V = 1 \d_u + 0  \d_v$ so $V^1 = 1$, $V^2=0$, and $\sqrt{g} = \sqrt{H^4} = H^2$. Plug in the divergence formula will yield the answer.  
 + 
 +In Boas' notation, we have $e_1 = \d_u / \| \d_u \| = \d_u / H$, so  
 +$$V = \d_u = H e_1$$  
 +and $V^1_{Boas} = H$, also $h_1 = h_2 = H$. Using that Boas formula, we have 
 +$$div V = \frac{1}{h_1h_2} \d_u( h_2 V^1_{Boas}) = H^{-2} \d_u (H^2) $$ 
 +yield the same answer.  
 + 
 + 
 + 
 + 
 + 
  
  
math121b/sample-m1.txt · Last modified: 2020/02/23 16:56 by pzhou