User Tools

Site Tools


math121b:sample-m1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math121b:sample-m1 [2020/02/19 08:55]
pzhou created
math121b:sample-m1 [2020/02/23 16:56] (current)
pzhou
Line 5: Line 5:
 2. Let $V = \{a + bt + ct^2 \mid a, b, c \in \R\} $ be the space of polynomials of degree at most 2. Let $f_1(t), f_2(t), f_3(t)$ be three elements in $V$, given as follows 2. Let $V = \{a + bt + ct^2 \mid a, b, c \in \R\} $ be the space of polynomials of degree at most 2. Let $f_1(t), f_2(t), f_3(t)$ be three elements in $V$, given as follows
 $$ f_1(2) = 1, \quad f_1(3) = 0, \quad f_1(5) = 0 $$ $$ f_1(2) = 1, \quad f_1(3) = 0, \quad f_1(5) = 0 $$
-$$ f_2(2) = 0, \quad f_1(3) = 1, \quad f_1(5) = 0 $$ +$$ f_2(2) = 0, \quad f_2(3) = 1, \quad f_2(5) = 0 $$ 
-$$ f_3(2) = 0, \quad f_1(3) = 0, \quad f_1(5) = 1 $$ +$$ f_3(2) = 0, \quad f_3(3) = 0, \quad f_3(5) = 1 $$ 
 Then  Then 
    * Show that  $f_1, f_2, f_3$ forms a basis of $V$.     * Show that  $f_1, f_2, f_3$ forms a basis of $V$. 
Line 14: Line 14:
 $$ x = \cosh(u) \cos(v), \quad y = \sinh(u) \sin(v) $$ $$ x = \cosh(u) \cos(v), \quad y = \sinh(u) \sin(v) $$
   * Find the metric tensor $g$ in terms of $u,v$ (or equivalently, the line element $ds^2$),    * Find the metric tensor $g$ in terms of $u,v$ (or equivalently, the line element $ds^2$), 
-  * The volume element +  * The volume element 
-  * The expansion of $\d_u$ and $\d_v$ using $\d_x$ and $\d_y$. +  * The expansion of $\d_u$ and $\d_v$ using $\d_x$ and $\d_y$. 
 +  * (bonus) If a function on $\R^2$ is given by $f(u,v) = 2u + 3v$, find its gradient expressed using basis vectors $\d_u, \d_v$.  
 +  * (bonus) Find the divergence of the vector field $V = \d_u$.  
 +You may use the formula 
 +$$ grad(f) = g^{ij}\, \d_i f \,\d_j $$ 
 +and  
 +$$ div(V^i \d_i) = \frac{1}{\sqrt{g}} \d_i(\sqrt{g} V^i) $$ 
 +where we used Einstein summation convention, and $\d_i = \frac{\d}{\d u_i}$, $u_1 = u, u_2 = v$.  
 + 
 +====== Partial Solution ====== 
 +1. Draw the picture to see. You should draw a parallogram with $v$ along the diagonal, and two sides parallel to $e_1,e_2$.  
 + 
 +2. Since $V$ is 3 dim, suffice to show that $f_i$ are linearly independent. That is, if we have 
 +$$ 0 = c_1 f_1(t) + c_2 f_2(t) + c_3 f_3(t) $$ 
 +for all $t$, then we need to show $c_i=0$. Plug in $t=2,3,5$ to conclude this is indeed so.  
 + 
 +Same thing for the next problem, suppose we try to find the expansion 
 +$$ f(t) = c_1 f_1(t) + c_2 f_2(t) + c_3 f_3(t) $$ 
 +then we can get $c_i$ by plug-in $t=2,3,5$.  
 + 
 +You may worry about: what about $t$ equal to other values? Well, since we have an equation about degree two polynomials, if it holds at 3 points, then it holds for all $t$.  
 + 
 +3. This is good place to introduce another trick, the relation about 2-dim orthogonal coordinate and holomorphic functions.  
 + 
 +Suppose $z = f(w)$ is a holomorphic function, if we write $z = x+ i y$, $w = u + iv$, we get Cauchy-Riemmann equation 
 +$$ \begin{cases}  
 +\frac{\d x}{\d u} = \frac{\d y}{\d v} \cr 
 +\frac{\d x}{\d v} = - \frac{\d y}{\d u}  
 +\end{cases} 
 +$$ 
 +Hence, we have  
 +$$ g(\frac{\d }{\d u} ,\frac{\d }{\d u}) =  \left( \frac{\d x}{\d u} \right)^2 + \left( \frac{\d y}{\d u} \right)^2 = \left( \frac{\d y}{\d v} \right)^2 + \left( - \frac{\d x}{\d v} \right)^2= g(\frac{\d }{\d v} ,\frac{\d }{\d v})$$ 
 +and 
 +$$ g(\frac{\d }{\d u} ,\frac{\d }{\d v}) = \frac{\d x}{\d u} \frac{\d x}{\d v} + \frac{\d y}{\d u} \frac{\d y}{\d v} = - \frac{\d x}{\d u} \frac{\d y}{\d u} + \frac{\d y}{\d u} \frac{\d x}{\d u} = 0 $$ 
 +Hence, we have orthogonal coordinate, and furthermore, the length of the two basis vectors are the same 
 +$g_{uu} = g_{vv}$.  
 + 
 +In this problem, we have 
 +$$ x + i y = \cosh(u + iv) $$ 
 +so the above method applies. Another examples is 
 +$$ y = uv , x = (u^2 - v^2)/2 $$ 
 +this is from 
 +$$ x + i y = (u + iv)^2/2.$$  
 + 
 +Of course, one can do the problem without using the above trick. One then do 
 +$$dx = ... du + ... dv, \quad dy = ... du + ... dv$$ 
 +then plug into 
 +$$ ds^2 = dx^2 + dy^2 $$ 
 +to express $ds^2$ using $du$ and $dv$. You should get in the end 
 +$$ ds^2 = (\cosh^2(u)- \cos^2(v)) (du^2 + dv^2) $$ 
 +Or, the factor can be written in different ways, since  
 +$$ \cosh^2(u)- \cos^2(v) = \sinh^2(u) + \sin^2(v) .$$ 
 + 
 +Let $H^2 = \sinh^2(u) + \sin^2(v)$, then we have  
 +$$ g = [g_{ij}] = \begin{pmatrix} H^2 & 0 \cr 0 & H^2 \end{pmatrix} $$ 
 +So we have $g_{ij} = \delta_{ij} H^2, \quad g^{ij} = H^{-2} \delta_{ij}$.  
 + 
 +The volume element is  
 +$$ \sqrt{g} du dv =  (\sinh^2(u) + \sin^2(v)) du dv$ 
 + 
 +The expansion is 
 +$$ \d_u = \d_u(x) \d_x + \d_u(y) \d_y = ... $$ 
 + 
 +The gradient is  
 +$$ grad(f) = H^{-2} \d_u(f) \d_u +  H^{-2} \d_v(f) \d_v =  H^{-2} (2  \d_u +  3 \d_v) $$ 
 + 
 +The divergence of $V$ is  
 +$$ div(V) = H^{-2} \d_u (H^2) = \frac{2 \cosh(u)\sinh(u)}{ \sinh^2(u) + \sin^2(v) }$$  
 +More details: $V = 1 \d_u + 0  \d_v$ so $V^1 = 1$, $V^2=0$, and $\sqrt{g} = \sqrt{H^4} = H^2$. Plug in the divergence formula will yield the answer.  
 + 
 +In Boas' notation, we have $e_1 = \d_u / \| \d_u \| = \d_u / H$, so  
 +$$V = \d_u = H e_1$$  
 +and $V^1_{Boas} = H$, also $h_1 = h_2 = H$. Using that Boas formula, we have 
 +$$div V = \frac{1}{h_1h_2} \d_u( h_2 V^1_{Boas}) = H^{-2} \d_u (H^2) $$ 
 +yield the same answer.  
 + 
 + 
 + 
 + 
 + 
  
  
math121b/sample-m1.1582131339.txt.gz · Last modified: 2020/02/19 08:55 by pzhou