User Tools

Site Tools


math121b:sample-m1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math121b:sample-m1 [2020/02/21 15:07]
pzhou
math121b:sample-m1 [2020/02/23 16:56] (current)
pzhou
Line 46: Line 46:
 $$ $$
 Hence, we have  Hence, we have 
-$$ g(\frac{\d }{\d u} ,\frac{\d }{\d u}) $$+$$ g(\frac{\d }{\d u} ,\frac{\d }{\d u}) =  \left( \frac{\d x}{\d u} \right)^2 + \left( \frac{\d y}{\d u} \right)^2 = \left( \frac{\d y}{\d v} \right)^2 + \left( - \frac{\d x}{\d v} \right)^2= g(\frac{\d }{\d v} ,\frac{\d }{\d v})$$ 
 +and 
 +$$ g(\frac{\d }{\d u} ,\frac{\d }{\d v}) = \frac{\d x}{\d u} \frac{\d x}{\d v} + \frac{\d y}{\d u} \frac{\d y}{\d v} = - \frac{\d x}{\d u} \frac{\d y}{\d u} + \frac{\d y}{\d u} \frac{\d x}{\d u} = 0 $$ 
 +Hence, we have orthogonal coordinate, and furthermore, the length of the two basis vectors are the same 
 +$g_{uu} = g_{vv}$.  
 + 
 +In this problem, we have 
 +$$ x + i y = \cosh(u + iv) $$ 
 +so the above method applies. Another examples is 
 +$$ y = uv , x = (u^2 - v^2)/2 $$ 
 +this is from 
 +$$ x + i y = (u + iv)^2/2.$$  
 + 
 +Of course, one can do the problem without using the above trick. One then do 
 +$$dx = ... du + ... dv, \quad dy = ... du + ... dv$$ 
 +then plug into 
 +$$ ds^2 = dx^2 + dy^2 $$ 
 +to express $ds^2$ using $du$ and $dv$. You should get in the end 
 +$$ ds^2 = (\cosh^2(u)- \cos^2(v)) (du^2 + dv^2) $$ 
 +Or, the factor can be written in different ways, since  
 +$$ \cosh^2(u)- \cos^2(v) = \sinh^2(u) + \sin^2(v) .$$ 
 + 
 +Let $H^2 = \sinh^2(u) + \sin^2(v)$, then we have  
 +$$ g = [g_{ij}] = \begin{pmatrix} H^2 & 0 \cr 0 & H^2 \end{pmatrix} $$ 
 +So we have $g_{ij} = \delta_{ij} H^2, \quad g^{ij} = H^{-2} \delta_{ij}$.  
 + 
 +The volume element is  
 +$$ \sqrt{g} du dv =  (\sinh^2(u) + \sin^2(v)) du dv$ 
 + 
 +The expansion is 
 +$$ \d_u = \d_u(x) \d_x + \d_u(y) \d_y = ... $$ 
 + 
 +The gradient is  
 +$$ grad(f) = H^{-2} \d_u(f) \d_u +  H^{-2} \d_v(f) \d_v =  H^{-2} (2  \d_u +  3 \d_v) $$ 
 + 
 +The divergence of $V$ is  
 +$$ div(V) = H^{-2} \d_u (H^2) = \frac{2 \cosh(u)\sinh(u)}{ \sinh^2(u) + \sin^2(v) }$$  
 +More details: $V = 1 \d_u + 0  \d_v$ so $V^1 = 1$, $V^2=0$, and $\sqrt{g} = \sqrt{H^4} = H^2$. Plug in the divergence formula will yield the answer.  
 + 
 +In Boas' notation, we have $e_1 = \d_u / \| \d_u \| = \d_u / H$, so  
 +$$V = \d_u = H e_1$$  
 +and $V^1_{Boas} = H$, also $h_1 = h_2 = H$. Using that Boas formula, we have 
 +$$div V = \frac{1}{h_1h_2} \d_u( h_2 V^1_{Boas}) = H^{-2} \d_u (H^2) $$ 
 +yield the same answer.  
 + 
 + 
 + 
 + 
 + 
  
  
math121b/sample-m1.1582326426.txt.gz · Last modified: 2020/02/21 15:07 by pzhou