User Tools

Site Tools


math214:02-19

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math214:02-19 [2020/02/19 01:28]
pzhou created
math214:02-19 [2020/02/19 11:03] (current)
pzhou
Line 13: Line 13:
   - $g_{\alpha \beta} \circ g_{\beta \alpha}=1_F$ over $U_\alpha \cap U_\beta$   - $g_{\alpha \beta} \circ g_{\beta \alpha}=1_F$ over $U_\alpha \cap U_\beta$
   - $g_{\alpha \beta} \circ g_{\beta\gamma} \circ g_{\gamma \alpha} = 1_F$ over $U_\alpha \cap U_\beta \cap U_\gamma$.    - $g_{\alpha \beta} \circ g_{\beta\gamma} \circ g_{\gamma \alpha} = 1_F$ over $U_\alpha \cap U_\beta \cap U_\gamma$. 
 +
 +==== Example of Vector Bundles ====
 +$E(n,k) \to Gr(n, k)$ tautological bundle over the Grassmannian. 
 +
 +$O(-1) \to \C\P(1)$.
 +
 +==== Operations on Vector Bundles ====
 +Direct Sum, Tensor Product, Hom. 
 +
  
 ===== Cotangent Bundle ===== ===== Cotangent Bundle =====
Line 48: Line 57:
  
 ** Prop **: The cotangent bundle $T^*M = \sqcup_p T_p^*M $ is a vector bundle over $M$.  ** Prop **: The cotangent bundle $T^*M = \sqcup_p T_p^*M $ is a vector bundle over $M$. 
 +
 +===== Poincaré Lemma For 1-form =====
 +Given a differential 1-form, we can do line integral. 
 +
 +A differential 1-form is **closed**, if the value of the line integral is invariant under isotopy that fixes the end-points. 
 +
 +A differential 1-form $\lambda$ is ** exact**, if there exists a function $f$, such that $df =  \lambda$. We say $f$ is a primitive of $\lambda$. 
 +
 +Over a unit ball (or more generally, connected space with trivial $\pi_1$), any closed 1-form is exact. We can find a primitive of $\lambda$, by fixing a point $p_0$ in the space, and define $f(p) = \int_{p_0}^p \lambda$.  
  
math214/02-19.1582104517.txt.gz · Last modified: 2020/02/19 01:28 by pzhou