User Tools

Site Tools


math214:04-01

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math214:04-01 [2020/03/31 22:25]
pzhou
math214:04-01 [2020/04/03 14:20] (current)
pzhou
Line 1: Line 1:
 +$$ \gdef\vect{\text{Vect}} \gdef\lcal{\mathcal L} \gdef\End{\text{End}} \gdef\Hom{\text{Hom}}$$
 +
 +
 ====== 2020-04-01, Wednesday ====== ====== 2020-04-01, Wednesday ======
 Today and Friday, we will follow Nicolascu's note 3.3, and discuss connection on vector bundle.  Today and Friday, we will follow Nicolascu's note 3.3, and discuss connection on vector bundle. 
Line 20: Line 23:
  
 ==== Connection and Covariant Derivative ==== ==== Connection and Covariant Derivative ====
-$$ \gdef\vect{\text{Vect}} \gdef\lcal{\mathcal L} $$+
 Let $\pi: E \to M$ be a vector bundle. A connection should satisfies the following Let $\pi: E \to M$ be a vector bundle. A connection should satisfies the following
   - Data: $\nabla: \vect(M) \times C^\infty(M, E) \to C^\infty(M, E)$, $(X, \sigma) \mapsto \nabla_X(\sigma)$.    - Data: $\nabla: \vect(M) \times C^\infty(M, E) \to C^\infty(M, E)$, $(X, \sigma) \mapsto \nabla_X(\sigma)$. 
Line 33: Line 36:
 where $T^*M \ot E$ is the tensor product of two vector bundles, and $C^\infty(M, T^* M \otimes E)$ is smooth section of it. Sometimes, we use the following notation: recall $\Omega^0(M)$ is 0-form, ie. smooth function, and $\Omega^1(M)$ is the space of 1-forms. We use $\Omega^0(M, E) = C^\infty(M, E)$, and $\Omega^1(M,E) = C^\infty(M, T^* M \otimes E)$, then  where $T^*M \ot E$ is the tensor product of two vector bundles, and $C^\infty(M, T^* M \otimes E)$ is smooth section of it. Sometimes, we use the following notation: recall $\Omega^0(M)$ is 0-form, ie. smooth function, and $\Omega^1(M)$ is the space of 1-forms. We use $\Omega^0(M, E) = C^\infty(M, E)$, and $\Omega^1(M,E) = C^\infty(M, T^* M \otimes E)$, then 
 $$\nabla: \Omega^0(M, E) \to \Omega^1(M, E). $$ $$\nabla: \Omega^0(M, E) \to \Omega^1(M, E). $$
 +In general, we define
 +$$ \Omega^k(M, E) = C^\infty( \wedge^k(T^*M) \ot E) $$
 +as $k$-forms with coefficient in $E$. 
 +
 +** Example 1 **: Trivial vector bundle with trivial connection. Suppose $E = M \times \R^k$, then we can define the trivial connection $\nabla$ on $E$ as
 +$$ \nabla (f_1, \cdots, f_k) = (df_1, \cdots, df_k). $$
 +
 +
 +The space of connection is not a linear space, but rather, an affine linear space. Suppose $\nabla^0, \nabla^1$ are both connections on $E$. Then, for any smooth function $f \in C^\infty(M)$, the linear combination
 +$$ f\nabla^0 + (1-f) \nabla^1: \Omega^0(M, E) \to \Omega^1(M, E). $$
 +is still a connection. Indeed, the Leibniz rule works. 
 +
 +** Proposition ** Suppose $\nabla^0, \nabla^1$ are both connections on $E$, then $A = \nabla^1 - \nabla^0 \in \Omega^1(M, \End(E))$. 
 +
 +Remark: In plain words, for any $X \in \vect(M)$, and $\sigma$ section of $E$, we have 
 +$A_X(\sigma)(p)$ only depends on $\sigma(p)$, ie., only the value of $\sigma$ at $p$, not the derivatives of $\sigma$ at $p$.  
 +
 +** Proof: ** We have $A: \Omega^0(M, E) \to \Omega^1(M, E)$ an $\R$-linear map automatically. We need to show that $A$ is $\C^\infty(M)$ linear, that is, for any $f \in C^\infty(M)$, $\sigma \in C^\infty(M, E)$, we want 
 +$$ A (f \sigma) = f A(\sigma). $$
 +Indeed, this is easy to check
 +$$ A(f \sigma) = (\nabla^1 - \nabla^0) (f \sigma) = (df - df ) \otimes \sigma + f (\nabla^1 - \nabla^0) (\sigma) = f A (\sigma).$$
 +
 +** Prop **: the space of all possible connections on $E$, denoted as $\acal(E)$ is an affine vector space model on $\Omega^1(\End(E))$. 
 +
 +Given the previous propostion, we only need to prove that 
 +  - this space $\acal(E)$ is not empty, and 
 +  - for any $\nabla \in \acal(E)$, $A \in \Omega^1(\End(E))$, $\nabla + A \in \acal(E)$. 
 +
 +The first statement can be shown using partition of unity. The second statement is an easy check. 
 +
 +==== Tensor, Hom and Dual ====
 +Let $E_1, E_2$ be two vector bundles on $M$. Recall that we can define the following 
 +$$ E_1 \ot E_2, \quad \Hom(E_1, E_2) $$
 +as vector bundles on $M$, where  the fiber satisfies $(E_1 \ot E_2)_p = (E_1)_p \ot (E_2)_p$ and $\Hom(E_1, E_2)_p = \Hom( (E_1)_p, (E_2)_p)$. We define the dual bundle of a vector bundle $E$ as $E^\vee := \Hom(E, \underline{\R})$ where
 +$\underline{\R} = \R \times M$ is the trivial bundle. 
 +
 +Suppose $(E_1, \nabla^1)$ and $(E_2, \nabla^2)$ are equipped with connections, we define connection on the tensor and hom bundle as 
 +$$ \nabla( \sigma_1 \ot \sigma_2) = \nabla ( \sigma_1) \ot \sigma_2 + \sigma_1 \ot \nabla (\sigma_2) $$
 +where we omit the superscript on $\nabla$ and we use the identification 
 +$$\Omega^1(M, E_1 \ot E_2) = \Omega^1(M) \ot \Omega^0(M, E_1) \ot \Omega^0(M, E_2),$$
 +where the tensor on the RHS is over $\C^\infty(M)$.
 +
 +Suppose $T \in \Hom(E_1, E_2)$, then we define
 +$(\nabla T)(\sigma_1) = \nabla (T \sigma_1) - T (\nabla \sigma_1).$
 +
 +==== Moving Frame ====
 +Let $M$ be a smooth manifold of dimension $n$, $E$ a rank $r$ vector bundle on $M$ over $\R$. Suppose $(U, (x_1,\cdots, x_n))$ is a coordinate chart on $M$, and furthermore $E|_U$ is trivializable, with a trivialization $(e_\alpha)_{\alpha=1,\cdots,r}$. Then we can write a local section $u \in \Gamma(U, E)$ as 
 +$$ u = \sum_\alpha u^\alpha e_\alpha = u^\alpha e_\alpha,$$
 +using Einstein summation convention. 
 +And we can write
 +$$ \nabla(u) =  \nabla(u^\alpha e_\alpha) = d(u^\alpha) \ot e_\alpha + u^\alpha \ot \nabla(e_\alpha). $$
 +Hence, if we know how $\nabla$ acts on the frame $e_\alpha$, we know how it acts on any sections. We may write
 +$$ \nabla(e_\alpha) = \Gamma^{\beta}_{i \alpha} dx^i \ot  e_\beta$$
 +These coefficients $\Gamma^{\beta}_{i \alpha}$ encodes the data of the connection over $U$.
 +
 +More abstractly, we can say: given a trivilization of $E|_U = U \times \R^r$, we may consider the trivial connection $d_U$ on $U \times \R^r$, then over $U$, we have
 +$$ \nabla|_U = d_U + A_U $$
 +where $A_U \in \Omega^1(U, \End(E))$ is called the ** local ** conection 1-form. 
  
  
  
math214/04-01.1585718748.txt.gz · Last modified: 2020/03/31 22:25 by pzhou