User Tools

Site Tools


math214:04-01

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math214:04-01 [2020/03/31 23:16]
pzhou
math214:04-01 [2020/04/03 14:20] (current)
pzhou
Line 37: Line 37:
 $$\nabla: \Omega^0(M, E) \to \Omega^1(M, E). $$ $$\nabla: \Omega^0(M, E) \to \Omega^1(M, E). $$
 In general, we define In general, we define
-$$ \Omega^k(M, E) = C^\infty( \wedge^k(T^*E) \ot E) $$+$$ \Omega^k(M, E) = C^\infty( \wedge^k(T^*M) \ot E) $$
 as $k$-forms with coefficient in $E$.  as $k$-forms with coefficient in $E$. 
  
Line 68: Line 68:
 ==== Tensor, Hom and Dual ==== ==== Tensor, Hom and Dual ====
 Let $E_1, E_2$ be two vector bundles on $M$. Recall that we can define the following  Let $E_1, E_2$ be two vector bundles on $M$. Recall that we can define the following 
-$$ E_1 \ot E_2, \quad \Hom(E_1, E_2), \quad  $$ +$$ E_1 \ot E_2, \quad \Hom(E_1, E_2) $$ 
-as vector bundles on $M$, where  the fiber satisfies $(E_1 \ot E_2)_p = (E_1)_p \ot (E_2)_p$ and $\Hom(E_1, E_2)_p = \Hom((E_1)_p, (E_2)_p)$. We define the dual bundle of a vector bundle $E$ as $E^\vee := \Hom(E, \underline{\R})$ where+as vector bundles on $M$, where  the fiber satisfies $(E_1 \ot E_2)_p = (E_1)_p \ot (E_2)_p$ and $\Hom(E_1, E_2)_p = \Hom( (E_1)_p, (E_2)_p)$. We define the dual bundle of a vector bundle $E$ as $E^\vee := \Hom(E, \underline{\R})$ where
 $\underline{\R} = \R \times M$ is the trivial bundle.  $\underline{\R} = \R \times M$ is the trivial bundle. 
  
math214/04-01.1585721815.txt.gz · Last modified: 2020/03/31 23:16 by pzhou