User Tools

Site Tools


math214:04-06

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
math214:04-06 [2020/04/06 07:47]
pzhou [Geometric Meaning of Curvature]
math214:04-06 [2020/04/06 09:05]
pzhou
Line 2: Line 2:
 $$\gdef\xto\xrightarrow \gdef\End{\z{ End}}$$ $$\gdef\xto\xrightarrow \gdef\End{\z{ End}}$$
  
-==== Geometric Meaning of Curvature ====+==== Summary of Connection and Curvature ====
 Let $E$ be a vector bundle over a smooth manifold. The connection $\nabla$ is given as such Let $E$ be a vector bundle over a smooth manifold. The connection $\nabla$ is given as such
 $$ \Omega^0(M, E) \xto{ \nabla} \Omega^1(M, E) \xto{ \nabla}  \Omega^2(M, E) \cdots.  $$ $$ \Omega^0(M, E) \xto{ \nabla} \Omega^1(M, E) \xto{ \nabla}  \Omega^2(M, E) \cdots.  $$
Line 10: Line 10:
  
 Locally, if we have a base coordinates $x_i$, and local trivialization $e_\alpha$ of $E$, then we may write the connection as Locally, if we have a base coordinates $x_i$, and local trivialization $e_\alpha$ of $E$, then we may write the connection as
-$$ \nabla = d +  \Gamma_i^\alpha_\beta dx^i \otimes e_\alpha \otimes \delta^\beta $$+$$ \nabla = d +  [\Gamma_i]^\alpha_\beta dx^i \otimes e_\alpha \otimes \delta^\beta $$
 where $\{\delta^\alpha\}$ is the dual basis to $\{e_\alpha\}$, and $e_\alpha \otimes \delta^\beta$ is a local section of $\End(E)$.  where $\{\delta^\alpha\}$ is the dual basis to $\{e_\alpha\}$, and $e_\alpha \otimes \delta^\beta$ is a local section of $\End(E)$. 
 $$ F_\nabla = \nabla^2 = (F_{ij})^\alpha_\beta dx^j \wedge d x^i \otimes e_\alpha \otimes \delta^\beta$$ $$ F_\nabla = \nabla^2 = (F_{ij})^\alpha_\beta dx^j \wedge d x^i \otimes e_\alpha \otimes \delta^\beta$$
Line 16: Line 16:
 $$ [F_{ij}]^\alpha_\beta = \d_i [\Gamma_j]^\alpha_\beta -  \d_j [\Gamma_i]^\alpha_\beta + [\Gamma_i]^\alpha_\gamma [\Gamma_j]^\gamma_\beta - [\Gamma_j]^\alpha_\gamma [\Gamma_i]^\gamma_\beta $$ $$ [F_{ij}]^\alpha_\beta = \d_i [\Gamma_j]^\alpha_\beta -  \d_j [\Gamma_i]^\alpha_\beta + [\Gamma_i]^\alpha_\gamma [\Gamma_j]^\gamma_\beta - [\Gamma_j]^\alpha_\gamma [\Gamma_i]^\gamma_\beta $$
 If we view $[--]^\alpha_\beta$ as $(\alpha, \beta)$ entry of an $n \times n$ matrix, then the above can be written as an equation matrix valued forms If we view $[--]^\alpha_\beta$ as $(\alpha, \beta)$ entry of an $n \times n$ matrix, then the above can be written as an equation matrix valued forms
-$$ F_{ij} = \d_i \Gamma_j - \d_j \Gamma_i + \Gamma_i \Gamma_j - \Gamma_j \Gamma_i $$+$$ F_{ij} = \d_i \Gamma_j - \d_j \Gamma_i + \Gamma_i \Gamma_j - \Gamma_j \Gamma_i$$ 
 + 
 + 
 +==== Holonomy Around the Loop ==== 
 +Recall that given a path $\gamma: [0,1] \to M$, we can define parallel transport 
 +$$ P_\gamma: E_{\gamma(0)} \to E_{\gamma(1)}.$$ 
 +In particular, if the path is a loop, ie., $\gamma(0)=\gamma(1)$, then we have an endormorphism 
 +$ P_\gamma \in \End(E_{\gamma(0)})$. This is called the holonomy of the loop.  
 + 
 +==== Geometric Picture ==== 
 +What is the geometric meaning of curvature?  
 + 
 +Suppose we are given a local presentation of $\nabla, F_\nabla$ as above. For simplicity, assume $M=\R^2$,  then we claim that  
 +$$ F_{12} = - \lim_{\epsilon, \delta \to 0} \frac{1}{\epsilon \delta} P_\gamma $$ 
 +where $\gamma$ is the loop around the boundary of the small square $[0, \epsilon] \times [0, \delta]$ counter-clockwise. 
 + 
 +To see this, we break down the loop into four segments, and denote the parallel transports on the four segments as $P_i, i=1, \cdots, 4$, and we work out the expansion modulo $\epsilon^2, \delta^2$ terms  
 + 
 +From $(0,0)$ to $(\epsilon,0)$, say we have path $\gamma_1(t) = (t, 0)$ for $t \in [0, \epsilon]$.  We need to solve equation 
 +$$ \d_t u^\alpha(t) + [\Gamma_i]^\alpha_\beta \dot \gamma_1^i(t) u^\beta(t) = 0 $$ 
 +since $\dot \gamma_1^i(t) = 1$ only if $i=1$, thus 
 +$$  \d_t u^\alpha(t) = - [\Gamma_1]^\alpha_\beta(0, t) u^\beta(t) $$ 
 +Approximately, we have 
 +$$ [u](\epsilon) \approx (1 - \epsilon \Gamma_1(0,0)) [u](0). $$ 
 +The parallel transport along the first segment is $$P_1 \approx 1 - \epsilon \Gamma_1(0,0),$$  
 +Similarly, we have 
 +$$ P_2 \approx 1 - \delta \Gamma_2(\epsilon, 0), \quad P_3 =  1 + \epsilon \Gamma_1(0,\delta) \quad P_4 \approx 1 + \delta \Gamma_2 (0,0) $$ 
 +Using Taylor expansion for $\Gamma$ at $(0,0)$,  
 +$$ P_4 P_3 P_2 P_1 \approx (1 + \delta \Gamma_2 ) (1 + \epsilon \Gamma_1  - \epsilon\delta \d_2 \Gamma_1 ) (1 - \delta \Gamma_2 - \delta \epsilon \d_1 \Gamma_2) (1 - \epsilon \Gamma_1)|_{(0,0)} $$ 
 +$$  \approx 1 - \epsilon \delta (\d_1 \Gamma_2 - \d_2 \Gamma_1 + \Gamma_1 \Gamma_2 - \Gamma_2 \Gamma_1)|_{(0,0)}. $$ 
 +Hence we are done. See also [Ni] 3.3 for a more rigorous derivation.  
 + 
 +===== Bianchi Identity ===== 
 +If $T \in \Omega^p(M, \End(E))$, then we have $$\Phi_T: \Omega^k(M, E) \to \Omega^{k+p}(M, E)$$ a $C^\infty(M)$-linear map. The exterior covariant derivative $\nabla (T) \in \Omega^{p+1}(M, \End(E))$ satisfies 
 +$$ \Phi_{\nabla(T)} = [\nabla, \Phi_T] = \nabla \Phi_T - (-1)^p \Phi_T \nabla $$ 
 +that is, for a section $u \in \Omega^k(M, E)$, we have 
 +$$ [\nabla(T)](u) = \nabla (T \wedge u) - (-1)^p T \wedge (\nabla u). $$ 
 + 
 +Now, take $T = F_\nabla \in \Omega^2(M, \End(E))$, we need to show that $\nabla(F_\nabla) = [\nabla, \nabla^2] = 0$. done.  
 + 
 +This seems too easy, did I miss a sign? .... 
 + 
 +Try again, using local presentation 
 +$$ F = (d + A)^2 = dA + A \wedge A = dA + (1/2) [A, A] $$ 
 +where in the last expression $\End(E)$ is viewed as a Lie algebra.  
 + 
 +Then 
 +$$ \nabla(F) = [\nabla, F] = [d+A, dA + (1/2) [A, A]] = (1/2) d[A, A] + [A, dA] + [A, [A, A]] = [A, [A, A]] $$ 
 +The last quantity is zero, by Jacobi identity.  
 + 
 +===== 
  
  
math214/04-06.txt · Last modified: 2020/04/06 10:35 by pzhou