User Tools

Site Tools


math214:04-06

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
math214:04-06 [2020/04/06 08:28]
pzhou
math214:04-06 [2020/04/06 09:05]
pzhou
Line 39: Line 39:
 $$  \d_t u^\alpha(t) = - [\Gamma_1]^\alpha_\beta(0, t) u^\beta(t) $$ $$  \d_t u^\alpha(t) = - [\Gamma_1]^\alpha_\beta(0, t) u^\beta(t) $$
 Approximately, we have Approximately, we have
-$$ [u](\epsilon) \approx (1 \epsilon \Gamma_1(0,0)) [u](0). $$ +$$ [u](\epsilon) \approx (1 \epsilon \Gamma_1(0,0)) [u](0). $$ 
-The parallel transport along the first segment is $$P_1 \approx 1 \epsilon \Gamma_1(0,0),$$ +The parallel transport along the first segment is $$P_1 \approx 1 \epsilon \Gamma_1(0,0),$$ 
 Similarly, we have Similarly, we have
-$$ P_2 \approx 1 \delta \Gamma_2(\epsilon, 0), \quad P_3 =  1 \epsilon \Gamma_1(0,\delta) \quad P_4 \approx 1 \delta \Gamma_2 (0,0) $$+$$ P_2 \approx 1 \delta \Gamma_2(\epsilon, 0), \quad P_3 =  1 \epsilon \Gamma_1(0,\delta) \quad P_4 \approx 1 \delta \Gamma_2 (0,0) $$
 Using Taylor expansion for $\Gamma$ at $(0,0)$,  Using Taylor expansion for $\Gamma$ at $(0,0)$, 
-$$ P_4 P_3 P_2 P_1 \approx (1 \delta \Gamma_2 ) (1 \epsilon \Gamma_1  - \epsilon\delta \d_2 \Gamma_1 ) (1 \delta \Gamma_2 \delta \epsilon \d_1 \Gamma_2) (1+\epsilon \Gamma_1)|_{(0,0)} $$+$$ P_4 P_3 P_2 P_1 \approx (1 \delta \Gamma_2 ) (1 \epsilon \Gamma_1  - \epsilon\delta \d_2 \Gamma_1 ) (1 \delta \Gamma_2 \delta \epsilon \d_1 \Gamma_2) (1 \epsilon \Gamma_1)|_{(0,0)} $$ 
 +$$  \approx 1 - \epsilon \delta (\d_1 \Gamma_2 - \d_2 \Gamma_1 + \Gamma_1 \Gamma_2 - \Gamma_2 \Gamma_1)|_{(0,0)}. $$ 
 +Hence we are done. See also [Ni] 3.3 for a more rigorous derivation.  
 + 
 +===== Bianchi Identity ===== 
 +If $T \in \Omega^p(M, \End(E))$, then we have $$\Phi_T: \Omega^k(M, E) \to \Omega^{k+p}(M, E)$$ a $C^\infty(M)$-linear map. The exterior covariant derivative $\nabla (T) \in \Omega^{p+1}(M, \End(E))$ satisfies 
 +$$ \Phi_{\nabla(T)} = [\nabla, \Phi_T] = \nabla \Phi_T - (-1)^p \Phi_T \nabla $$ 
 +that is, for a section $u \in \Omega^k(M, E)$, we have 
 +$$ [\nabla(T)](u) = \nabla (T \wedge u) - (-1)^p T \wedge (\nabla u). $$ 
 + 
 +Now, take $T = F_\nabla \in \Omega^2(M, \End(E))$, we need to show that $\nabla(F_\nabla) = [\nabla, \nabla^2] = 0$. done.  
 + 
 +This seems too easy, did I miss a sign? .... 
 + 
 +Try again, using local presentation 
 +$$ F = (d + A)^2 = dA + A \wedge A = dA + (1/2) [A, A] $$ 
 +where in the last expression $\End(E)$ is viewed as a Lie algebra.  
 + 
 +Then 
 +$$ \nabla(F) = [\nabla, F] = [d+A, dA + (1/2) [A, A]] = (1/2) d[A, A] + [A, dA] + [A, [A, A]] = [A, [A, A]] $$ 
 +The last quantity is zero, by Jacobi identity.  
 + 
 +===== 
 + 
 + 
math214/04-06.txt · Last modified: 2020/04/06 10:35 by pzhou