User Tools

Site Tools


math214:04-06

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math214:04-06 [2020/04/06 08:28]
pzhou
math214:04-06 [2020/04/06 10:35] (current)
pzhou [Bianchi Identity]
Line 39: Line 39:
 $$  \d_t u^\alpha(t) = - [\Gamma_1]^\alpha_\beta(0, t) u^\beta(t) $$ $$  \d_t u^\alpha(t) = - [\Gamma_1]^\alpha_\beta(0, t) u^\beta(t) $$
 Approximately, we have Approximately, we have
-$$ [u](\epsilon) \approx (1 \epsilon \Gamma_1(0,0)) [u](0). $$ +$$ [u](\epsilon) \approx (1 \epsilon \Gamma_1(0,0)) [u](0). $$ 
-The parallel transport along the first segment is $$P_1 \approx 1 \epsilon \Gamma_1(0,0),$$ +The parallel transport along the first segment is $$P_1 \approx 1 \epsilon \Gamma_1(0,0),$$ 
 Similarly, we have Similarly, we have
-$$ P_2 \approx 1 \delta \Gamma_2(\epsilon, 0), \quad P_3 =  1 \epsilon \Gamma_1(0,\delta) \quad P_4 \approx 1 \delta \Gamma_2 (0,0) $$+$$ P_2 \approx 1 \delta \Gamma_2(\epsilon, 0), \quad P_3 =  1 \epsilon \Gamma_1(0,\delta) \quad P_4 \approx 1 \delta \Gamma_2 (0,0) $$
 Using Taylor expansion for $\Gamma$ at $(0,0)$,  Using Taylor expansion for $\Gamma$ at $(0,0)$, 
-$$ P_4 P_3 P_2 P_1 \approx (1 \delta \Gamma_2 ) (1 \epsilon \Gamma_1  - \epsilon\delta \d_2 \Gamma_1 ) (1 \delta \Gamma_2 \delta \epsilon \d_1 \Gamma_2) (1+\epsilon \Gamma_1)|_{(0,0)} $$+$$ P_4 P_3 P_2 P_1 \approx (1 \delta \Gamma_2 ) (1 \epsilon \Gamma_1  - \epsilon\delta \d_2 \Gamma_1 ) (1 \delta \Gamma_2 \delta \epsilon \d_1 \Gamma_2) (1 \epsilon \Gamma_1)|_{(0,0)} $$ 
 +$$  \approx 1 - \epsilon \delta (\d_1 \Gamma_2 - \d_2 \Gamma_1 + \Gamma_1 \Gamma_2 - \Gamma_2 \Gamma_1)|_{(0,0)}. $$ 
 +Hence we are done. See also [Ni] 3.3 for a more rigorous derivation.  
 + 
 +===== Bianchi Identity ===== 
 +$$ \nabla^{\End(E)}(F_\nabla) = 0 $$ 
 + 
 +(1) Formal proof. If $T \in \Omega^p(M, \End(E))$, then we have $$\Phi_T: \Omega^k(M, E) \to \Omega^{k+p}(M, E)$$ a $C^\infty(M)$-linear map. The exterior covariant derivative $\nabla (T) \in \Omega^{p+1}(M, \End(E))$ satisfies 
 +$$ \Phi_{\nabla(T)} = [\nabla, \Phi_T] = \nabla \Phi_T - (-1)^p \Phi_T \nabla $$ 
 +that is, for a section $u \in \Omega^k(M, E)$, we have 
 +$$ [\nabla(T)](u) = \nabla (T \wedge u) - (-1)^p T \wedge (\nabla u). $$ 
 + 
 +Now, take $T = F_\nabla \in \Omega^2(M, \End(E))$, we need to show that $\nabla(F_\nabla) = [\nabla, \nabla^2] = 0$. done.  
 + 
 +This seems too easy, did I miss a sign? (no..) 
 + 
 +(2) Try again, using local presentation 
 +$$ F = (d + A)^2 = dA + A \wedge A = dA + (1/2) [A, A] $$ 
 +where in the last expression $\End(E)$ is viewed as a Lie algebra.  
 + 
 +Then 
 +$$ \nabla(F) = [\nabla, F] = [d+A, dA + (1/2) [A, A]] = (1/2) d[A, A] + [A, dA] + (1/2) [A, [A, A]] = (1/2) [A, [A, A]] $$ 
 +The last quantity is zero, by Jacobi identity, to be more explicity, we write 
 +$$A = \sum_i dx^i \ot \Gamma_i, \quad \Gamma_i \in M_n(\R)$$ 
 +Then 
 +$$[A, [A, A]] = \sum_{i,j,k} dx^i \wedge dx^j \wedge dx^k [\Gamma_i, [\Gamma_j, \Gamma_k]] = 0$$ 
 +for example, the term with $dx^1 \wedge dx^2 \wedge dx^3$ has (2 times) 
 +$$ [\Gamma_1, [\Gamma_2, \Gamma_3]] + [\Gamma_2, [\Gamma_3, \Gamma_1]] + [\Gamma_3, [\Gamma_1, \Gamma_2]] = 0. $$ 
 + 
 + 
 + 
 + 
 + 
 + 
math214/04-06.1586186916.txt.gz · Last modified: 2020/04/06 08:28 by pzhou