
Incremental Improvements on the Placement and Routing of
Minecraft Redstone Circuits

Quan Nguyen
Massachusetts Institute of Technology

qmn@mit.edu

ABSTRACT
We present dewey, the successor to the pershing [5] place-and-
route tool forMinecraft Redstone circuits. As a performance-oriented
rewriting of pershing from the ground-up in C, dewey implements
greatly improved routines for standard cell placement and routing,
and leaks a ton of memory. However, we materialize a speedup of
up to 34.0× over previous work. dewey shows tremendous strides
towards the placement and routing of entire computer processors
in Minecraft.

ACM Reference Format:
Quan Nguyen. 2018. Incremental Improvements on the Placement and
Routing of Minecraft Redstone Circuits. In Proceedings of Special Interest
Group on TBD (SIGTBD’18). ACM, New York, NY, USA, 3 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Demands on computer architects have increased substantially over
the last several decades, to squeeze ever-diminishing gains from
ever-shrinking feature sizes. Device designers and computer archi-
tects alike have demonstrated tremendous creativity in the pursuit
of raw computational power and energy efficiency in light of the
constrained art that is physical design. However, hardware design
comes with some substantial drawbacks: lengthy hardware proto-
typing, high capital costs, and potentially cumbersome licensing
restrictions.

We contend that Minecraft, a game popular with young children
and the young-at-heart, can be used to bridge the gap between
a diminishing supply of computer architects and the challenges
of tomorrow. With the Redstone Update, Minecraft introduced
components that behave much like digital circuits. However, all
Minecraft circuits are built fully by hand; this is the equivalent
of full-custom design in the VLSI world. We seek to alleviate the
trouble and complexity of full-custom Minecraft circuit design by
building an automatic place-and-route tool for Minecraft circuits.
The current state-of-the-art, pershing, was written in Python and
accomplishes this task, albeit slowly and with some crucial errors
that make it difficult to use in practice. In this paper, we improve
on pershing, namely, in speed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGTBD’18, April 2, Cambridge, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The reader is referred to [5] for a more detailed description of
redstone logic. We improve on the state of the art with a completely
re-written implementation of pershing in C, called dewey1. We
take advantage of manual memory allocation (in fact, to the point
of abuse) to maximize performance.

2 THE MINECRAFT PHYSICAL DESIGN
FLOW

The process by which a Verilog description of a circuit becomes a
fully placed-and-routed circuit largely follows that of prior work.
The Verilog must be converted to a netlist with a digital synthesis
tool, like Yosys [9], which outputs a file in the Berkeley Logic
Interchange Format (BLIF). Combined with a standard cell library
expressed in terms of Minecraft blocks, the placer arranges the
standard cells to minimize wire lengths subject to constraints on
the design. The router then routes nets connecting standard cells
to each other and the top-level input and output pins. Extraction,
among other things, transforms the design into a workable circuit,
complete with timing information and the actual block layout. The
extracted design then can be placed in a Minecraft world for in-situ
testing or can be used as a “black-box” module as part of a larger
design.

2.1 Synthesis
Once designers produce the Verilog description of a synthesizable
hardware circuit– perhaps generated automatically with Chisel
[2] or Bluespec [1] – they can feed it to Yosys [9], an open-source
hardware synthesis tool. For an example, we will synthesize, place,
and route a four-bit counter. Figure 1 displays the corresponding
Verilog.

module counter (clk , rst , en, count);

input clk , rst , en;
output reg [3:0] count;

always @(posedge clk)
if (rst)

count <= 4'd0;
else if (en)

count <= count + 4'd1;

endmodule

Figure 1: Verilog source code for a 4-bit binary counter, from
http://www.clifford.at/yosys/screenshots.html.

In conjunction with a supplied file in the Liberty format, which
expresses not only the functionality of the available logic gates
1George Dewey is the only person to attain the rank of Admiral of the Navy in the
United States [7]. A contemporary of John J. Pershing [8], General of the Armies, and
the namesake of previous work, Dewey can be seen as the “sea” version of Pershing.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://www.clifford.at/yosys/screenshots.html

SIGTBD’18, April 2, Cambridge, MA, USA Quan Nguyen

but also the costs (e.g. area, delay) of using them, Yosys produces
a netlist in the form of a BLIF. This becomes one of the inputs to
dewey.

Although it is not a part of our contribution, Yosys is an essential
tool for future work: because dewey directly uses its output with no
modification, all optimizations to the circuit at the logic level must
be performed here. Yosys can help reduce the size of a design by
inferring complex yet compact cells rather than logically-equivalent
standard cells of more elementary functionality2. Thus, it is the
prerogative of the standard cell library writer to create compact and
efficient cells that represent common functions desired by hardware
designers.

2.2 Placement
dewey accepts two main inputs: a BLIF file, which specifies the
standard cells used and the nets used to connect them, as well as
a library file, supplied as a YAML file. The library file contains
descriptions of the standard cells made available to Yosys, with the
addition of the arrangement of the Minecraft blocks comprising
these cells.

We use the TimberWolf placement algorithm [6] to produce the
best placements through simulated annealing: a locally-optimal
placement, in the early stages, can be abandoned for a non-optimal
placement in search for a global maximum.

In determining the score, we consider several factors: the esti-
mate of the wire lengths used to connect all nets (based on the
minimum spanning tree), the design size, the spread of the design
from its center of mass, the squareness of the design, and the over-
laps between individual cells. Of these, only cell overlaps will cause
violations and force the placer to continue. Placement typically
completes in fewer than 1,000 iterations, each of which consisting
of 100 generations of modifications, which include displacing cells,
rotating them, or interchanging the position of like cells.

A major performance loss occurs in the prior work’s version of
the placer because it produces an extracted version of the place-
ment before determining its score. Repeated allocations of memory
are time-consuming, and also completely unnecessary: thanks to
Euclidean geometry, we can directly compute the overlaps knowing
only the dimensions of the cells and their placements. Space-saving
optimizations like these greatly increase the placer’s speed. Figure 2
shows the placement of a four-bit counter.

2.3 Routing
Once placements are determined, the router uses a modified form
of Lee’s algorithm [3] to route nets between the pins of the netlist.
In particular, we adapt the modified Lee’s algorithm devised by Silk
[4] to our purposes.

We initialize a design based routing all pins together based on
the minimum spanning tree produced by Kruskal’s algorithm, and
connect them using Manhattan routing. Then, we rip-up nets with
violations or poor scores and re-route them. Each net is composed of
several segments, whichmay connect standard cell pins or segments
together. The routing process is as follows:

2Technically, we need only a NAND gate, as it is a universal logic gate. But we are in
the business of good logic.

Figure 2: Completed placement of a four-bit counter.

(1) For each pin, or already-routed segment, initialize a matrix
marking these locations as start – the origin. Create a pri-
ority queue containing locations to explore next paired with
the cost of exploring that new location.

(2) Propagate, in a style similar to breadth-first search, from the
origin until we reach the wavefront formed by a different
pin or segment. In a separate backtrace matrix, record the
path from every location explored back to the origin.

(3) Using the backtrace matrices of the two different groups,
create a new segment connecting the two groups’ origins
together. Note that a segment may connect to any other part
of any other segment.

It is possible to introduce violations, perhaps by crossing over
another already-placed net, in order to complete routing. This is
acceptable as long as the net will eventually be routed to remove all
violations. Special considerations are made for vertical signal trans-
mission, which impose special requirements on routed nets. Prior
work failed to address this, and we are happy to report that dewey’s
router correctly handles these cases by introducing violations in
the relevant cases.

We also speed up routing here: we avoid the allocation of large
matrices wherever possible. The actual path of a net is expressed as
an array of backtraces instead of a matrix with the block locations
filled in. This also has the added benefit of making displacement
extremely easy: simply modify the start and end points of a given
segment.

2.4 Extraction
Finally, with routing completed, the extraction process produces
the actual blocks necessary to build the circuit in Minecraft. By
performing a depth-first search from the driving pin (of which each
net has exactly one), we can determine not only the delay of a net,
from source to sink, but also any needed buffering. Buffering is
achieved by placing redstone “repeaters”, which buffer the signal
but add additional delay. With signal buffering complete, we can
compute the maximum frequency fmax at which this circuit can
operate. Figure 3 shows a completed routing and extraction of a
four-bit counter.

As the final output, the extraction process produces a matrix
of the actual block placements needed to build this circuit in the

Incremental Improvements on the Placement and Routing of Minecraft Redstone Circuits SIGTBD’18, April 2, Cambridge, MA, USA

Minecraft world. pershing provides tools to actually place these
blocks in a game save format.

Figure 3: Extracted design of a four-bit counter.

3 PERFORMANCE RESULTS
dewey’s performance was measured using the time utility, using
the same environment as pershing: a 2013 MacBook Pro 2.5 GHz
quad-core with 16 GB RAM. dewey was compiled with the -O3
option using clang version 8.0.0.

dewey is much faster than prior work in this field; see Table 1
for details. The author in [5] uses markedly inferior programming
to perform placement and routing.

As dewey is still in development, we are currently unable to
compute critical delays, and therefore, the fmax of a given circuit.
However, we expect them to be vastly faster than results produced
by pershing by the simple fact that our designs tend to be smaller.

Completion Time (s)

Design Cells Nets Volume dewey Prior Work Speedup

2-input RS flip-flop 2 4 5 × 20 × 21 2.2 15 6.8×
2-bit adder with carry 7 11 7 × 31 × 37 8.8 117 13.3×
4-bit counter 23 26 7 × 52 × 77 31.9 1084 34.0×

Table 1: dewey performance, including speedup over prior
work.

4 CONCLUSION
We made pershing a lot faster. This brings a considerably larger
variety to the kinds of circuits we can synthesize in Minecraft. With
parallelization – a feature kept in mind while dewey was being
written – we can route even larger circuits with ease.

5 ACKNOWLEDGEMENTS
We would like to again thank the efforts of the reviewers and the
program committee. The authors would also like to thank their
advisers, who are still unaware this work was happening despite
the amount of real research work to be done. The work of the
authors is unofficial, not from Minecraft or its creator, Mojang, and
not endorsed by or otherwise approved by Mojang.

REFERENCES
[1] [n. d.]. Tutorial: Bluespec SystemVerilog: Efficient, Correct RTL from High-Level

Specifications.
[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: Constructing
Hardware in a Scala Embedded Language. In Proceedings of the 49th Annual Design
Automation Conference. ACM, 1216–1225.

[3] C.Y. Lee. 1961. An Algorithm for Path Connections and Its Applications. Electronic
Computers, IRE Transactions on EC-10, 3 (Sept 1961), 346–365. https://doi.org/10.
1109/TEC.1961.5219222

[4] Youn-Long Lin, Yu-Chin Hsu, and Fur-Shing Tsai. 1989. SILK: a Simulated Evo-
lution Router. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 8, 10 (Oct 1989), 1108–1114. https://doi.org/10.1109/43.39072

[5] Quan Nguyen. 2016. PERSHING: An Automatic Place-and-Route Tool for Minecraft
Redstone Circuits.

[6] C. Sechen and A. Sangiovanni-Vincentelli. 1985. The TimberWolf Placement and
Routing Package. Solid-State Circuits, IEEE Journal of 20, 2 (April 1985), 510–522.
https://doi.org/10.1109/JSSC.1985.1052337

[7] Wikipedia. 2018. George Dewey — Wikipedia, The Free Encyclopedia. (2018).
https://en.wikipedia.org/wiki/George_Dewey

[8] Wikipedia. 2018. John J. Pershing — Wikipedia, The Free Encyclopedia. (2018).
https://en.wikipedia.org/wiki/John_J._Pershing

[9] Clifford Wolf. [n. d.]. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.
([n. d.]).

https://doi.org/10.1109/TEC.1961.5219222
https://doi.org/10.1109/TEC.1961.5219222
https://doi.org/10.1109/43.39072
https://doi.org/10.1109/JSSC.1985.1052337
https://en.wikipedia.org/wiki/George_Dewey
https://en.wikipedia.org/wiki/John_J._Pershing
http://www.clifford.at/yosys/

	Abstract
	1 Introduction
	2 The Minecraft Physical Design Flow
	2.1 Synthesis
	2.2 Placement
	2.3 Routing
	2.4 Extraction

	3 Performance Results
	4 Conclusion
	5 Acknowledgements
	References

