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1.1 Introduction

This set of lecture notes explores certain inference problems in nonparametric statistics. Loosely speaking
nonparametric models will mean classes of probability distributions for observed data which are indexed by
infinite dimensional parameter spaces. Rather than simply trying to understand the estimation of the infinite
dimensional objects parametrizing the distributions, we will focus on estimating real valued functions of the
distribution. These functions will typically have as its domain some metric space and will be in general
called functionals in this course. Apart from exploring “optimal” estimation of such functionals, we shall
also seek connections of such estimation problems with statistical inference problems such as: goodness of
fit testing and construction of confidence sets.

Historically, estimation of real valued functionals was initially rigorously viewed from a
√
n-rate of estimation

point of view. This required one to find conditions on the kinds of functionals to be estimated under which
the mean squared error of estimation of nice estimators scaled like n−1, along with accompanied theory of
efficiency of estimators, in the sense of Local Asymptotic Minimaxity type of results ([Aad2000]). In this
course, we will typically go below the

√
n-rate of estimation– a common phenomenon while working with

functionals and function classes of “low regularity”.

1.2 Examples

Before going into the general set up, we begin with examples of some functionals of interest, which will be
our go to objects for the rest of the course.

(i) Mean and Variance Functional: Two of the oldest and most classically studied functionals of data
generating mechanism might be the population mean and variance. In general, they can be descried
as follows. If P denotes the distribution of a typical observation X over sample space (R,B(R)), then
the mean and variance functionals are (provided they exist)

ψmean(P ) =

∫
xdP (x),

ψvar(P ) =

∫
(x− ψmean(P ))

2
dP (x).

If P is dominated by a σ-finite measure µ yielding a density f , then the mean and variance functionals
ca also be written as

ψmean(P ) =

∫
xf(x)dµ(x) = χmean(f),
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ψvar(P ) =

∫
(x− χmean(f))

2
f(x)dµ(x) = χvar(f).

“Typically” it is possible to provide
√
n-consistent estimators of these functionals.

(ii) Quadratic Functionals: Suppose that a typical observation X is a draw from a distribution on [0, 1]
having a density f with respect to the Lebesgue measure. Thus the distribution P of an observation
X is described by f . We wish to estimate the quadratic functional

ψ(Pf ) =

∫
f2dµ = χ(f).

This functional arises in multiple contexts: confidence set construction for Hodges-Lehmann adaptive
estimators of location, goodness of fit testing in L2 norm, and constructions of L2 confidence balls
([BR88], [BR90], [KP96]).

(iii) Treatment Effetct Functionals: Consider the estimation of a treatment effect on an outcome in
presence of a vector Z of confounding variables. Specifically, for a binary treatment A and response Y ,
a convenient way of summarizing effect of treatment A on outcome Y is through the variance weighted
average treatment effect ([CHIM2009]) defined as

τ := E
(
V ar(A|Z)c(Z)

E(V ar(A|Z)

)
=

E(cov(Y,A|Z))

E(V ar(A|Z)
(1.1)

where
c(z) = E(Y |A = 1, Z = z)− E(Y |A = 0, Z = z). (1.2)

The above follows from a simple calculation and c(z) is called the average treatment effect among
subjects with Z = z under the assumption of no unmeasured confounding. A semiparametric constraint
in this set up is

c(z) = ψ∗ for all z (1.3)

or specifically the model
E(Y |A,Z) = ψ∗A+ b(Z), (1.4)

where b(Z) = E(Y |Z). It turns out that under above model , τ equals ψ∗. Moreover, the inference on τ
is closely related to the estimation E(Cov(Y,A|Z)). Specifically, point and interval estimator for τ can
be constructed from point and interval estimator of the numerator E(cov(Y,A|Z)) of τ . In particular,
for any fixed τ∗ ∈ R, define Y ∗(τ∗) = Y − τ∗A and the corresponding functional

ψ(τ∗) = E((Y ∗(τ∗)− E(Y ∗(τ∗)|Z))(A− E(A|Z))) = E(cov(Y ∗(τ∗), A|Z)).

Then τ is the unique solution of ψ(τ∗) = 0. Suppose we can construct point estimators ψ̂(τ∗) and
(1 − α) interval estimator of ψ(τ∗). Then τ̂ satisfying ψ(τ̂) = 0 is an estimator of τ with similar
properties. Further a (1− α) confidence set for τ is the set of τ∗ for which (1− α) interval estimator
of ψ(τ∗) contains 0. Considering the inference on E(Cov(Y, Y |Z)) we note that

E(Cov(Y,A|Z)) = E(AY )− E(E(A|Z)E(Y |Z)).

Above, E(AY ) is easy to estimate by sample average. The crux of estimating E(Cov(Y,A|Z)) lies in
E(E(A|Z)E(Y |Z)). This will be our functional of interest.

Suppose that a typical observation is distributed as X = (Y,A,Z) for A taking values in the two-point
set {0, 1}. We think of Y as a response variable, A as a treatment variable and Z other covariate
information collected on subjects under study. The covariate Z is chosen such one can assume the
condition of no unmeasured confounders. The model can be parameterized by the marginal density
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f of Z (relative to some dominating measure µ), b(z) = E(Y | Z = z), a(z) = P(A = 1 | Z = z),
and c(z) = E(Y |A = 1, Z = z) − E(Y |A = 0, Z = z). Thus the distribution P of an observation X is
described by the triple (a, b, c, f). We wish to estimate

ψ(P(a,b,c,f)) =

∫
abfdµ = χ((a, b, c, f)).

(iv) Missing Data Models and Mean Functionals: Suppose that a typical observation is distributed
as X = (Y A,A,Z) for Y and A taking values in the two-point set {0, 1} and conditionally independent
given Z. We think of Y as a response variable, which is observed only if the indicator A takes the value
1. The covariate Z is chosen such that it contains all information on the dependence between response
and missingness indicator, thus making the response missing at random. Alternatively, we think of Y as
a “counterfactual” outcome if a treatment were given (A = 1) and estimate (half) the treatment effect
under the assumption of no unmeasured confounders. The model can be parameterized by the marginal
density f of Z (relative to some dominating measure µ) and the probabilities b(z) = P(Y = 1 | Z = z)
and a(z)−1 = P(A = 1 | Z = z). (Using a for the inverse probability simplifies later formulas.)
Alternatively, the model can be parameterized by the pair (a, b) and the function g = f/a, which is
the conditional density of Z given A = 1, up to the norming factor P(A = 1). Thus the distribution P
of an observation X is described by the triple (a, b, f), or equivalently the triple (a, b, g). We wish to
estimate the mean response EY , i.e. the functional

ψ(P(a,b,g)) =

∫
bf dµ =

∫
abg dµ = χ((a, b, g)).

Estimators that are
√
n-consistent and asymptotically efficient in the semiparametric sense have been

constructed using a variety of methods (e.g. [RR95], [T2007] ) but only if a and b are restricted to
sufficiently small regularity classes.

1.3 Notations and Asymptotic Framework

Let X1, . . . , Xn is a random sample from a distribution P on a sample space (Ω,A). Let Un denote the
empirical U -statistic measure, viewed as an operator on functions. For given k ≤ n and a function f : Ωk → R
on the sample space this is defined by

Unf =
1

n(n− 1) · · · (n− k + 1)

∑∑
· · ·
∑

1≤i1 6=i2 6=···6=ik≤n

f(Xi1 , Xi2 , · · · , Xik).

We do not let the order k show up in the notation Unf . This is unnecessary, as the notation is consistent
in the following sense: if a function f : Ωl → R of l < k arguments is considered a function of k arguments
that is constant in its last k− l arguments, then the right side of the preceding display is well defined and is
exactly the corresponding U -statistic of order l. In particular, Unf is the empirical distribution Pn applied
to f if f : Ω→ R depends on only one argument.

We write PnUnf = P kf for the expectation of Unf if X1, . . . , Xn are distributed according to the probability
measure P . We also use this operator notation for the expectations of statistics in general. We call f
degenerate relative to P if

∫
f(x1, . . . , xk) dP (xi) = 0 for every i and (xj : j 6= i), and we call it symmetric

if its values are invariant under permutations of its arguments. Given an arbitrary measurable function
f : Ωk → R we can form a function that is degenerate relative to P by subtracting the orthogonal projection
in L2(P k) onto the functions of at most k− 1 variables. This degenerate function can be written in the form

(DP f)(X1, . . . , Xk)=
∑

A⊂{1,...,k}

(−1)k−|A|EP (f(X1, . . . , Xk) | Xi : i ∈ A) , (1.5)
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where the sum if over all subsets A of {1, . . . , k}, including the empty set, for which the conditional expec-
tation is understood to be P kf . If the function f is symmetric, then so is the function DP f .

Given two functions g, h : Ω→ R we write g × h for the function (x, y) 7→ g(x)h(y). More generally, given k
functions g1, . . . , gk we write g1 × · · · × gk for the tensor product of these functions. Such product functions
are degenerate iff all functions in the product have mean zero.

Our framework of evaluating inference procedures will typically be asymptotic in nature i.e. we will let
n → ∞. We set up some basic conventions that will be followed throughout in this respect. If an and
bn are two sequences of real numbers then an � bn (and an � bn) implies that an/bn → ∞ (respectively
an/bn → 0) as n→∞. Similarly an & bn (and an . bn) implies that lim inf an/bn = C for some C ∈ (0,∞]
(and lim sup an/bn = C for some C ∈ [0,∞)). Alternatively, an = o(bn) will also imply an � bn and
an = O(bn) will imply that lim sup an/bn = C for some C ∈ [0,∞)).

Our optimality criterion will be that of a asymptotic rate minimaxity, defined in the following sense. Consider,
X1, . . . , Xn to be random sample from distribution P where P varies over a class of probability distributions
P. Consider estimating a functional ψ : P → R with a measurable map Tn : (Ωn,An)→ R and evaluate its
performance by the worst case mean squared error as follows:

Risk(Tn,P) = sup
P∈P

EP (Tn − ψ(P ))
2
.

We will typically interested in understanding sequences ψn(P)→ 0, when they exist, such that

0 < C1(P) ≤ sup
Tn

Risk(Tn,P)

ψn(P)
≤ C2(P) ≤ ∞.

In the above sense, a
√
n-rate of estimation will mean ψn(P) = 1

n .
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order of convergence estimates, Sankhyā: The Indian Journal of Statistics, Series A (1988),
pp. 381–393.

[BR90] P.J. Bickel, and Y. Ritov, Achieving information bounds in non and semiparametric models,
The Annals of Statistics (1990), pp. 925–938.

[CHIM2009] R. Crump, V.J. Hotz, G.W. Imbens, and O.A. Mitnik, Dealing with limited overlap in
estimation of average treatment effects, Biometrika (2009).

[KP96] G. Kerkyacharian, and D. Picard, Estimating nonquadratic functionals of a density using
Haar wavelets, The Annals of Statistics (1996), pp. 485–507.

[RR95] A. Rotnitzky, and J. Robins, Semi-parametric estimation of models for means and covari-
ances in the presence of missing data, Scandinavian Journal of Statistics (1995), pp. 323–333.

[RA2006] J. Robins, and A.W. Van der Vaart, Adaptive nonparametric confidence sets, The Annals
of Statistics (2006), pp. 229–253.

[T2007] A. Tsiatis, Semiparametric theory and missing data, Springer Science & Business Media
(2007).

[Aad200] A.W. Van der Vaart,Asymptotic Statistics, Cambridge university press (2000).


