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2.1 General Setup

X1, . . . , Xn are a random sample from Pη with η ∈ H where H is subset of a Hilbert space with norm ‖ · ‖.
Assume also that Pη has a density pη w.r.t. a σ-finite measure µ on the sample space (Ω,A). We are
interested in estimating ψ(Pη) = χ(η) : H→ R.

If we start with an initial estimator η̂ of η, then typically χ(η̂) will be a consistent estimator of χ(η) for
most “nice” functionals. However, one might do better by going a through a “one-step” kind of estimator
as follows. Suppose χ admits a Fréchet-type Taylor expansion type of representation as follows:

χ(η) = χ(η̂) + χ′η̂(η̂ − η) +O(‖η̂ − η‖2), (2.1)

where χ′ is a bounded linear functional on H. For the sake of intuitive understanding, we will use such
expansions freely without worrying about the technical details.

Expansion (2.1) implies that, unless the derivative term vanishes, the plug-in estimator χ(η̂) will have
error OP (‖η̂ − η‖) (this follows from Banach-Steinhaus Theorem provided we assume things like the class
χ′η, η ∈ H is point-wise bounded ). When H is “high-dimensional”, this error can be potentially large.

However, the same expansion above also suggest a possibly better way to alleviate this concern– “estimate
the derivative term”. Of course, we need some form of the derivative to do this. One way of doing this is
assuming a “Von-Mises” kind of representation of the derivative:

χ′η̂ (η̂ − η) =

∫
χ1
η̂ (dPη − dPη̂)

=

∫
χ1
η̂dPη. (2.2)

Above we have assumed that
∫
χ1
ηdPη = 0 (which can be arranged since

∫
1d(Pη − dPη̂) = 0 and thereby

defining χ̃1
η̂ = χ1

η̂ −
∫
χ1
η̂dPη̂). Now that the derivative term of (2.1) is an expectation with respect to the

data generating mechanism, we can estimate it by the sample average Pnχ1
η̂ and have the resulting one-step

estimator

χ̂n = χ(η̂) + Pnχ1
η̂. (2.3)

The error of this estimator can be informally analyzed as follows:

χ̂n − χ(η) = χ(η̂)− χ(η) + Pnχ1
η̂

= Op
(
‖η̂ − η‖2

)
+ (Pn − Pη)χ1

η̂

= Op
(
‖η̂ − η‖2

)
+OP (n−1/2). (2.4)
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Above we have assumed that the difference (Pn −P )χ1
η̂ is “centered” and “variance” O(1/n). Note that the

words “centered” and “variance” are in quotes. This is because the randomness in the initial estimator η̂
prevents a simple calculation of mean and variance. One can use empirical process theory can be used to
show that the effect of replacing χ1

η by χ1
η̂ is negligible, if the class of functions χ1

η is not “too large” (e.g.
Donsker type classes). If we care about orders of magnitude only, and then a simpler approach is to split
the sample and use separate observations to construct η̂ and Pn. Then the order calculations above can
be justified by reasoning conditionally on the first sample, and it suffices that χ1

η̂dPη remains bounded in
probability.

The improvement of the estimator over the plug-in can be justified as follows. Whereas to achieve an error
of OP (n−

1
2 ) one would have required ‖η̂ − η‖ = OP (n−

1
2 ) for the plug-in, one requires a more modest

‖η̂ − η‖ = OP (n−
1
4 ) to achieve the same goal with χ̂n.

Quadratic Functional: Consider X1, . . . , Xn i.i.d. from density η w.r.t. Lebsegue measure µ on
[0, 1]d. Consider η ∈ H ⊂ L2[0, 1]d and χ(η) =

∫
η2dµ. An expansion like (2.2) can be justified with

χ1
η(x) = 2(η(x)−χ(η)). The corresponding estimator χ̂n will required ‖η̂− η‖2 = Op(n

− 1
4 ) whereas the

plug-in
∫
η̂2dµ requires ‖η̂− η‖2 = Op(n

− 1
2 ). If η is assumed to belong to a class of smoothness α, then

the former often demands α
2α+d ≥

1
4 (i.e. α ≥ d

2 ) and the latter α
2α+d ≥

1
2 (not possible).

The question now stands about how to obtain an expansion (2.1) satisfying (2.2). Interestingly, χ1
η above is

what is known as an “Influence Function” in semiparametric theory, developed significantly through 1980-
1990. Informally the routine goes as follows. A Tangent Set at Pη of the model (Pη, η ∈ H) is the set of all
score functions at t = 0 i.e.

ġη =

(
∂

∂t|t=0
pηt

)
/pη,

of (smooth) one dimensional sub-models (Pηt , t ∈ (−1, 1)) with η0 = η. By smooth sub-models above we
mean maps t→ ηt such that the derivative above exists. An influence function of χ(η) at Pη is a measurable
map x→ χ1

η,∗(x) such that for all paths t→ ηt as above

d

dt|t=0
χ(ηt) =

d

dt|t=0
Pηtχ

1
η,∗ = Pηχ

1
η,∗ġη. (2.5)

Let us intuitively convince ourselves that this influence function χ1
η,∗ is the same as χ1

η in the Von-Mises type
expansion (2.2). To compare (2.5) and (2.2), identify η with ηt and η̂ with η. Then the Von-Mises expansion
suggests that

χ(ηt) = χ(η) + Pηtχ
1
η +O

(
‖ηt − η‖2

)
= χ(η) +

∫
χ1
ηpηtdµ+O

(
‖ηt − η‖2

)
= χ(η) +

∫
χ1
η(pηt − pη)dµ+

∫
χ1
ηpηdµ+O

(
‖ηt − η‖2

)
= χ(η) + t

∫
χ1
η ġηpηdµ+O(t2). (Some kind of invertibility of the map: η → pη)

Noting that (2.5) suggests the same expansion with χ1
η,∗ implies equality of χ1

η,∗ and χ1
η. It is easier to verify

that a functional χ has an influence function as above rather than a Von-Mises expansion, which is a stronger
requirement. Indeed, we use the Von-Mises type expansion only for intuitive understanding of the decay of
error terms and for practical purposes of finding estimators we will essentially make use of (2.5) instead.
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Quadratic Functional: Consider X1, . . . , Xn i.i.d. from density η w.r.t. Lebsegue measure µ on [0, 1].
Consider η ∈ H ⊂ L2[0, 1] and χ(η) =

∫
η2dµ. Then χ1

η(x) = 2(η(x)−χ(η)) is an influence function at η
as in (2.5). To check this take any “smooth” one-dimensional submodel (ηt, t ∈ (−1, 1)) with η0 = η with

score function ġη. Then
(

∂
∂|t=0

ηt

)
/η = ġη and as a result d

dt|t=0
χ(ηt) = d

dt|t=0

∫
η2t dµ = 2

∫
ηġηηdµ =

2Pη (η − χ(η)) ġη– verifying the claim.

Note that, an influence function as defined in (2.5) is not necessarily unique. This is because only its
inner products with elements ġη of the tangent set matter. An influence function that is contained in the
closed linear span of the tangent set is called the efficient influence function, since it minimizes the variance
V arPηPnχ1

η over all influence functions. (This also happens to be the “influence function” of asymptotically
efficient estimators)

Although using the intuition as above one can justify
√
n-consistent estimators of χ(η) if ‖η̂−η‖ = Op(n

−1/4),
the class of η might be too large in nonparametric problems to even guarantee this. For example, for the case
of quadratic functional of density, one needed at least d/2 derivatives of the density. For even moderately
large d, this might be a restrictive assumption to make for developing a reasonable theory. The idea indeed
is to take higher order Von-Mises type expansion along with higher order versions of influence function and
scores. Let us try to develop an heuristic version of this for a second order expansion.

Taking (2.2) one step further, suppose

χ(η) = χ(η̂) + χ′η̂(η̂ − η) +
1

2
χ′′η̂(η̂ − η, η̂ − η) +O(‖η̂ − η‖3), (2.6)

where χ′′ is a bounded bilinear functional on H. A second order Von-Mises type expansion will require

χ′η̂(η̂ − η) +
1

2
χ′′η̂(η̂ − η, η̂ − η) =

∫
χ1
η̂ (dPη − dPη̂) +

1

2

∫ ∫
χ2
η̂ (dPη − dPη̂)× (dPη − dPη̂) (2.7)

Assuming without loss of generality that χ1
η and χ2

η are degenerate with respect to Pη, we then have a
two-step estimator as follows:

χ̂n = χ(η̂) + Pn(χ1
η̂) +

1

2
Unχ2

η̂ = χ(η̂) + Un
(
χ1
η̂ +

1

2
χ2
η̂

)
Because the variance of a U-statistic is of order O(1/n), this estimator ought to have an error of the order
Op
(
‖η̂ − η‖3

)
+OP (n−1/2).

To operationalize such an expansion, one can go through definitions of higher order scores and influence
functions as follows. Note that higher order influence functions should have the right product with higher
order scores representing th higher order derivatives of χ(ηt) for smooth one dimensional submodels.

Connecting with (2.7), this should roughly imply

χ(ηt) ≈ χ(η) +

∫
χ1
η(x1)pηt(x1)dµ(x1) +

∫ ∫
χ2
η(x1, x2)pηt(x1)pηt(x2)dµ(x1)dµ(x2)

= χ(η) +

∫ ∫
χ1
η(x1)pηt(x1)pηt(x2)dµ(x1)dµ(x2) +

∫ ∫
χ2
η(x1, x2)pηt(x1)pηt(x2)dµ(x1)dµ(x2)

≈ χ(η) + t

∫ ∫ (
χ1
η(x1) +

1

2
χ2
η(x1, x2)

)(
∂

∂t|t=0

2∏
i=1

pηt(xi)

)
/

(
2∏
i=1

pη(xi)

)
dPη(x1)dPη(x2)

+
t2

2

∫ ∫ (
χ1
η(x1) +

1

2
χ2
η(x1, x2)

)(
∂2

∂t2|t=0

2∏
i=1

pηt(xi)

)
/

(
2∏
i=1

pη(xi)

)
dPη(x1)dPη(x2)
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In particular, a tangent set of order 2 at Pη is the set of all derivatives

ġ(x1, x2) =

(
∂

∂t|t=0

2∏
i=1

pηt(xi)

)
/

(
2∏
i=1

pη(xi)

)

g̈η(x1, x2) =

(
∂2

∂t2|t=0

2∏
i=1

pηt(xi)

)
/

(
2∏
i=1

pη(xi)

)

which arise from submodels (Pηt , t ∈ (−1, 1, )). This implies defining an influence function of order 2 to be
(x1, x2)→ χ1

η(x1) + 1
2χ

2
η(x1, x2) satisfying

d

dt|t=0
χ(ηt) =

d

dt|t=0
P 2
ηt

(
χ1
η +

1

2
χ2
η

)
= P 2

η

(
χ1
η +

1

2
χ2
η

)
ġη,

d2

dt2|t=0
χ(ηt) =

d2

dt2|t=0
P 2
ηt

(
χ1
η +

1

2
χ2
η

)
= P 2

η

(
χ1
η +

1

2
χ2
η

)
g̈η. (2.8)

Combining the basic relationships in (2.5) and (2.8), we can define mth order influence function of χ(η) at

Pη to be χ̇
(m)
η , which is a measurable function of m variables x1, . . . , xm satisfying,

dj

dtj |t=0
χ(ηt) =

dj

dtj |t=0
Pmηt χ̇

(m)
η , j = 1, . . . ,m. (2.9)

This can indeed be motivated by a corresponding mth order Von-Mises type representation of χ(η), which
in turn suggests a m-step estimator of χ(η) as

χ̂(m)
n = χ(η̂) + Unχ̇(m)

η̂ . (2.10)

The first and second order calculations above also suggest that

χ̇(m)
η = χ1

η +
1

2
χ2
η + . . .+

1

m!
χmη ,

where χjη, j = 1, . . . ,m corresponds to the first m terms of a Von-Mises type expansion.

For computation in examples the defining equations (2.9) of a higher order influence function can be tedious.
Alternatively, it is usually easier to apply (and justify) the rule that a higher order derivative is the derivative
of the previous order derivative. One computes the first order influence function x1 → χ1

η(x1) of the
functional χ(η) at Pη as usual. Next recursively for j = 2, 3, . . . ,m, one determines influence functions
xj → χjη(x1, . . . , xj) as influence functions of the functionals η → χj−1η (x1, . . . , xj−1), for fixed (x1, ..., xj1).

The function χjη can then be made degenerate by subtracting its projection on the linear span of all functions
of one argument less. We shall prove later that such a computation actually yields an influence function
according to the definition (2.9).

Coming back to our estimator in (2.10), our intuition above also suggests that we might expect that for any
fixed m,

χ̂(m)
n − χ(η) =

(
Un − Pmη

)
χ̇(m)
η + oP (n−1/2) +Op

(
‖η̂ − η‖m+1

)
. (2.11)

In words, the bias of the plug-in estimator χ(η̂) would be corrected to the order Op
(
‖η̂ − η‖m+1

)
, and

therefore
√
n-estimators for χ(η) exist even in situations where η is estimable only with low precision. The

only cost would be a slightly larger variance in the U-statistic relative to the empirical measure.
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Unfortunately, there is no such free lunch. In particular, one cannot keep on correcting the bias without
seriously increasing the variance. Although the preceding heuristics are correct, they are not applicable, since
higher order influence functions typically do not exist. The main reason being that when L2(Pη) is not finite
dimensional, multilinear maps from L2(Pη)j → L2(Pη) cannot be represented as repeated integral of the
type demanded by Von-Mises type expansions. To see this note that, a second order Von-Mises expansion
demands that a particular bounded bilinear form B(h1, h2) : L2(Pη) × L2(Pη) → R to be representable
through some measurable map χ̈ : Ω2 → R as

B(h1, h2) =

∫ ∫
h1(x1)χ̈(x1, x2)h2(x2)dPη(x1)dPη(x2)

Such a bilinear functional B(h1, h2) can always we represented as
∫
h1(x1)Ah2(x1)dPη(x1) for some con-

tinuous linear functional A : L2(Pη) → L2(Pη). However, it is not in general true that a bounded linear
functional A : L2(Pη) → L2(Pη) can always be represented as Ah(·) =

∫
χ̈(·, x′)h(x′)dPη(x′). For example

consider Ah = h to be the identity map, which is of course a continuous linear functional. If one was able to
represent this as a kernel operation as above, then h(x) =

∫
χ̈(x, x′)h(x′)dPη(x′) for all x. But if for fixed

x, χ̈(x, x′) ∈ L2(Pη) , then
∫
χ̈(x, x′)h(x′)dPη(x′) is a bounded linear functional. This means that h→ h(x)

is a bounded linear functional L2(Pη)→ R, which is not true.

Failure of existence of second order influence functions in the above sense does not mean that the idea to use
a quadratic expansion for improved estimation is not fruitful. We can still try and estimate the higher order
terms as well as possible, and still improve on the linear estimator. Focusing on the second order expansion, a
key observation to attain this is that a bilinear map on a finite-dimensional subspace L×L ⊂ L2(Pη)×L2(Pη)
is always representable by a kernel. This is captured by the next result.

Theorem 2.1. Suppose L ⊂ L2(Pη) is a finite-dimensional subspace and B : L× L→ R is continuous and
bilinear. Then there exists a function χ̈ ∈ L2(Pη × Pη) such that

B(h1, h2) =

∫ ∫
h1(x1)χ̈(x1, x2)h2(x2)dPη(x1)dPη(x2)

for all (h1, h2) ∈ L2(Pη)× L2(Pη).

Proof. Let dim(L) = k <∞ and {e1, . . . , ek} be an orthonormal basis of L. Then

χ̈(x1, x2) =

k∑
i=1

ei(x1)ei(x2)

is the required kernel.

This theorem implies that we can therefore always represent and estimate the mth order derivative at
differences η − η̂ within any given finite-dimensional linear space L. The resulting estimator looks like

χ(η̂) + Un

χ1
η̂ +

m∑
j=2

1

j!
χjη̂,L


where χjη̂,L’s are the different pieces of the partial mth order influence function based on an approximating
space L. The error in nonrepresented directions however remains. The main challenge is to determine the
directions of non-representation so that we can balance the following three terms.

(i) The bias in the non-represented directions.
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(ii) The always present estimation bias: OP (‖η̂ − η‖m+1).

(iii) The variance of the U-statistic arising from the representing subspaces L.

Let us pay some attention to the third component. Although the variance of a U-statistic with a fixed
kernel is dominated by its linear term (of the Hoeffding’s Decomposition) and is therefore of O(1/n), since
we need to represent the functionals in more and more directions given larger sample size n (to reduce the
representation bias), we end up with kernels that become more and more complex with n. The resulting
variance of is therefore typically larger than O(1/n).
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