Therapy for Acute Stroke
and
Systems of Care for TIA

Gregory W. Albers, MD
Coyote Foundation Professor of Neurology and Neurological Sciences
Director, Stanford Stroke Center
Stanford University Medical Center
Acute Stroke Therapy

- Intravenous tPA
 - FDA approved in 1996 (3 hour window)
 - Cost-effective
 - Better efficacy with earlier treatment
 - Treatment rates vary from <1%-20%
MERCI® Retrieval System
Acute Stroke Therapy

- Endovascular therapy
 - Several thrombectomy devices with FDA 510K clearance
 - Encouraging cohort study data
 - CMS reimbursement
 - Randomized trials required to establish efficacy
 - No data on cost-effectiveness
DRG Reimbursement for Acute Stroke Therapy

- Standard medical therapy - about 6K
- IV tPA - about 12K
- Endovascular therapy - >20K
Your loved one is in the ER with a large stroke:

MD: “There is a large blood clot in the brain, we have an FDA cleared device (Merci) that can probably pull out the clot. That could be a good option or we can enroll in a clinical trial: 50% get the device, 50% do not.

So, what will it be? Merci or No Merci?”
Endovascular Stroke Therapy

• Randomized Trials
 – Lack of equipoise made clinical trials very challenging
 – Selection bias, extremely slow recruitment
 – All 3 randomized trials failed to establish efficacy of thrombectomy devices
Audience Response Question:

Should there be changes in reimbursement?

A. Suspend all reimbursement for thrombectomy
B. Reimburse only if enrolled in a randomized trial
C. No changes yet; let’s wait for more data
October 26, 2013 10 am: Stroke Code in ER

61yo female, healthy but recent stressors; 2 hr episode of L sided weakness; BP 160/90, neuro exam now nl, routine labs ok, non-con CT nl

Resident calls attending: Attending asks “do you think she had a TIA?”

Resident: “I have no idea.”

Attending sees patient obtains more history, “some features are atypical, but ABCD² score is 4; I think it might be a TIA, but maybe not. Let’s get an MRI”
What is the diagnosis? Should the patient be admitted?

MRI / MRA negative except for:

DWI
How Should TIA Be Defined?

In 2002 the TIA Working Group proposed a new definition:

“A brief episode of neurological dysfunction caused by focal brain or retinal ischemia with clinical symptoms … without evidence of acute infarction”

TIA: New technology triggers a change in terminology to emphasize tissue status, rather than time

New AHA endorsed definition of TIA:

A transient episode of neurological dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction

Stroke Risk After TIA: ABCD\(^2\) Score

Score points for each of the following:

- Age \(\geq 60\) (1)
- Blood pressure \(\geq 140/90\) on initial evaluation (1)
- Clinical:
 - Focal weakness (2)
 - Speech impairment without weakness (1)
- Duration
 - \(\geq 60\) min (2)
 - 10-59 min (1)
- Diabetes (1)

Final Score 0-7

ABCD2 Score and Stroke Risks

Figure: Short-term risk of stroke by ABCD2 score in six groups combined (n=4799)

After adjustment for ABCD² score, patients with acute infarction had substantially higher 7 day stroke risk:

OR for positive DWI: 14.9 (7.4- 30.2)

Incorporation of imaging evidence of infarction into ABCD² improved predictive power: optimal weighing of 3 points

Stroke Risk at 7 days

<table>
<thead>
<tr>
<th>ABCD²</th>
<th>N</th>
<th>DWI positive</th>
<th></th>
<th>N</th>
<th>DWI negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤1</td>
<td>20</td>
<td>0.0 (0.0- 0.0)</td>
<td></td>
<td>225</td>
<td>0.0 (0.0- 0.0)</td>
</tr>
<tr>
<td>2</td>
<td>68</td>
<td>1.5 (0.0- 8.2)</td>
<td></td>
<td>329</td>
<td>0.0 (0.0- 0.0)</td>
</tr>
<tr>
<td>3</td>
<td>135</td>
<td>2.2 (0.5- 6.5)</td>
<td></td>
<td>469</td>
<td>0.2 (0.0- 1.2)</td>
</tr>
<tr>
<td>4</td>
<td>228</td>
<td>5.3 (2.7- 9.2)</td>
<td></td>
<td>577</td>
<td>0.7 (0.2- 1.8)</td>
</tr>
<tr>
<td>5</td>
<td>241</td>
<td>9.5 (6.0- 14.3)</td>
<td></td>
<td>454</td>
<td>0.7 (0.1- 1.9)</td>
</tr>
<tr>
<td>≥6</td>
<td>192</td>
<td>12.5 (8.0- 18.6)</td>
<td></td>
<td>268</td>
<td>0.4 (0.0- 2.1)</td>
</tr>
<tr>
<td>Total</td>
<td>884</td>
<td>7.1 (5.5- 9.1)</td>
<td></td>
<td>2322</td>
<td>0.4 (0.2- 0.7)</td>
</tr>
</tbody>
</table>

Duration of Transient Symptoms and Proportion with Negative DWI

Pooled Data from 10 MRI Studies; N=818

<table>
<thead>
<tr>
<th>Duration of Symptoms (Hours)</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>64.7</td>
</tr>
<tr>
<td>1-2</td>
<td>67.0</td>
</tr>
<tr>
<td>2-3</td>
<td>60.3</td>
</tr>
<tr>
<td>3-6</td>
<td>72.6</td>
</tr>
<tr>
<td>6-12</td>
<td>62.1</td>
</tr>
<tr>
<td>12-18</td>
<td>51.7</td>
</tr>
<tr>
<td>18-24</td>
<td>49.3</td>
</tr>
</tbody>
</table>

Technology Needed:
- Serum marker “troponin for TIA”

NSA Recommendations for Systems of Care for TIA

- Goal: identify dedicated models of care for TIA that assure the best possible patient outcomes in diverse healthcare settings.

Factors Influencing Systems of Care for TIA

- Regional and institutional differences have a major impact:
 - Limited inpatient bed availability
 - ED overcrowding
 - Presence of a stroke unit
 - Payer mix
 - Availability of stroke experts
 - Availability of brain/vascular imaging
NSA Recommendations: Triage

Healthcare systems should establish a routine TIA triage process including:

• Urgent evaluation recommended if TIA within the last 24 hours

• TIA admission policy established by representative physicians

• TIA patients who are not hospitalized should be evaluated within 24 to 48 hours by a physician with expertise in TIA
Recommendations: TIA Evaluation

Healthcare systems should establish a routine TIA evaluation protocol including:

- Description of recommended lab testing
- Protocols for head imaging, by MRI (optimal) or CT performed within 24 hrs
- Protocols for carotid imaging (MRA, CTA, or Doppler), preferably within 24 hrs
- Protocols for cardiac monitoring and/or echocardiography in appropriate patients
NSA 2011 Systems of Care for TIA

Examples: STANFORD TWO ACES

TWO ACES
Transient Ischemic Attack Work-Up as Outpatient Assessment of Clinical Evaluation and Safety

Jean-Marc Olivot, MD, PhD; Connie Wolford, NP; James Castle, MD; Michael Mlynash, MD, MS; Neil E. Schwartz, MD, PhD; Maarten G. Lansberg, MD, PhD; Stephanie Kemp, BS; Gregory W. Albers, MD

Stroke 2011; 42:1839-1843
Triage protocol

Direct Referral

n=43

Stanford ED

n=224

- ABCD2<4
- ABCD2 4-5
- ABCD2>5

MRI+MRA

Stanford TIA Clinic

Within 1-2 business day

n=200

- MRI+MRA
- MRI

NO

Symptomatic Stenosis >50%?

YES

Stanford Stroke Service

n=67=25%
Methods

- Final diagnosis defined by stroke neurologist: Probable TIA/Possible TIA/Unlikely TIA

- Follow up Stroke/MI/Vascular Death at 7, 30 and 90 days.
Hypotheses

1- Patients will have a low rate of stroke recurrence <2% at 1 week and <5% at 90 days

2- Both groups will have lower risk than predicted based on ABCD2 score *

Outcome: Stroke/MI/Vasc Death

<table>
<thead>
<tr>
<th></th>
<th>% events at 7 and 90 days</th>
<th>% expected risk at 7 days*</th>
<th>p</th>
<th>% expected risk at 90 days*</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=265)</td>
<td>0.7 (0.2-2.7)</td>
<td>4.0</td>
<td>0.015</td>
<td>7.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Final Dx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIA/stroke</td>
<td>1.8 (0.5-6.5)</td>
<td>4.9</td>
<td>0.44</td>
<td>8.2</td>
<td>0.032</td>
</tr>
<tr>
<td>(n=108)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIA Clinic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>0.5 (0.9-2.8)</td>
<td>2.5</td>
<td>0.215</td>
<td>6.2</td>
<td>0.002</td>
</tr>
<tr>
<td>(n=199)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** 2 patients were lost of follow-up before 7 days
• The median (IQR) Medicare cost per patient was*:
 • $1,884 ($1,866-$1,897) for direct referrals to the TIA clinic;
 • $4,049 ($3,594-$4,756) for ED to the TIA clinic;
 • $5,804 ($4,027-$7,173) for ED to hospitalization.

• The median Medicare cost for a hospitalized patient was greater by*:
 • $3,587 (95% CI $1,450 – 5,396, p=0.006) compared to the cost for a direct referral to the TIA clinic;
 • $1,427 (95% CI $326 - $3,088, p=0.108) compared to the cost for an ED to the TIA clinic referral.

*based on a representative 15% sample of Medicare reimbursed patients from each group in the TWOACES study
Conclusion: ABCD2 based Outpatient TIA Clinic Triage Protocol

- Safe: <2% stroke/MI/vasc death rate at 90 days
- Stroke rates lower than predicted based on ABCD2
- Reduced hospitalization rate: 25% vs. prior to TWO ACES protocol, about 75%.
- Cost savings compared to routine hospital admission

Limitations:
- Small sample size, selected population, some patients did not return to clinic, insurance issues
Alternative Model: CDA triage

Direct Referral
ABCD<4 symptoms > 48 hrs

Selective MRI+MRA

Stanford TIA Clinic within 1 week

NO

Positive DWI or Symptomatic Stenosis >50% ?

YES

Clinical Decision Area*

ED Observation unit <24 hr stay
- Clinical monitoring
- MRI/MRA within 6 hrs
- Labs/EKG/Other evaluations

Hospital Admission
Call to Action

• Expand adoption of TIA Clinics
 – More cost-effective than hospital admission
 – Hospitalization reserved for high risk patients
 – Further research efforts to clarify high risk subgroups and differentiate events due to brain ischemia from non-ischemic mimics