Pharmacists Role in Stroke Prevention Management in an Integrated Medical Home Setting

Anthony P. Morreale, PharmD, MBA, BCPS
Assistant Chief Consultant for Clinical Pharmacy Services and Healthcare Delivery Services Research
Pharmacy Benefits Management Services (119)
Department of Veterans Affairs
VA’s Success with Optimizing Drug Therapy: Clinical Pharmacy Services

- In VA, Clinical Pharmacy Specialists work collaboratively with providers under a scope of practice that includes prescriptive privileges.

- Clinical Pharmacy Specialist (CPS) are the medication use and safety experts *improving medication safety*

- CPS have the advance skills necessary to provide comprehensive medication management in Primary Care and Specialty Care *improving outcomes*.

- Minimize the patient’s need to see multiple providers, for medication assessments and evaluations thus *improving access*

- Allows Provider time to be utilizes for evaluation of disease progression and new identification of illnesses which *improves overall health*

- *Studies have demonstrated that for every $1 invested in clinical pharmacy services, more than $4 in benefit is seen.*
Clinical Pharmacy Model Vision: Collaboratively Bridging the Gap Between Primary Care and Specialty Care

Patient Aligned Care Team

Teamlet & Expanded Team

Coordination of Care

Clinical Pharmacy Specialist

Specialty Care

Clinical Pharmacy Specialist

Clinical Nurse Specialist

Disease/Cohort Management

Management of Care

Reference: A. Morreale June 2011
Pharmacist SOP by Disease State

- Global/General (not dx-specific)
- Anticoagulation
- Lipids
- Diabetes
- Hypertension
- Inpatient - Int. Med.
- Smoking Cessation
- CHF
- ESA/Anemia
- COPD
- Thyroid
- BPH
- Pain Management
- Inpatient - Specialty
- Geriatrics
- Infectious Disease
- Hepatitis C
- Osteoporosis
- Pharmacokinetics
- Renal/Nephrology
- Oncology

Values (left to right): 1125, 917, 508, 543, 458, 435, 296, 370, 294, 296, 210, 219, 182, 158, 175, 177, 139, 103, 94, 74, 55, 51
Nationwide Clinical Pharmacy Workload Trends

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td># Pharmacists with SOP</td>
<td>2,132</td>
<td>2,616</td>
<td>2,853</td>
<td>34%</td>
</tr>
<tr>
<td>Encounters/FT E</td>
<td>403</td>
<td>615</td>
<td>586</td>
<td>45%</td>
</tr>
<tr>
<td>% Pharmacists w/SOP</td>
<td>30.9%</td>
<td>38.6%</td>
<td>41%</td>
<td>33%</td>
</tr>
<tr>
<td>Total 160 Encounters</td>
<td>2,454,419</td>
<td>3,677,269</td>
<td>3,751,001</td>
<td>53%</td>
</tr>
</tbody>
</table>

Updated Oct 1, 2013
PBM designed a clinical reminder tool for roll-out by end of calendar year. Project aligns with VHA Transformational Initiatives.

Tool provides documentation of clinical interventions related to medication management by Clinical Pharmacy Specialists (CPS) across VHA, as non-physician providers.

CPRS tools provide the ability to document Pharmacotherapy interventions which have demonstrated:
 - Potential to reduce harm to patients
 - Potential cost avoidance to healthcare system

CPS demonstrate the ability to document clinical interventions and therapeutic achievements for specific disease states:
- Anticoagulation Intervention
- Compliance/Adherence Addressed
- Contraindication to Medication
- Drug Interaction Addressed
- Drug Not Indicated
- Duplication Of Therapy
- Medication Interventions
- Med Reconciliation Performed
- Non-formulary Review/Conversion
- Prevent /Manage Drug Allergy
- Manage Adverse Drug Event
- Nonpharmacologic Intervention
- Therapeutic Drug Monitoring or Diag Eval
- Diabetes Intervention or Goal Met
- Hypertension Intervention or Goal Met
- Heart Failure Intervention or Goal Met
- Lipid Intervention or Goal Met
- Bone Health Intervention
- Smoking Cessation Intervention or Goal Met
- Hepatitis C Intervention or Goal Met
PhARMD Project Expansion

<table>
<thead>
<tr>
<th>Metric</th>
<th>FY12</th>
<th>FY13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pharmacist tool users</td>
<td>117</td>
<td>893</td>
</tr>
<tr>
<td>Total Disease State Interventions</td>
<td>15,410</td>
<td>180,019</td>
</tr>
<tr>
<td>Total Additional Pharmacotherapy Interventions</td>
<td>16,717</td>
<td>129,917</td>
</tr>
<tr>
<td>Avg Number of visits per CPS</td>
<td>162.5</td>
<td>198.2</td>
</tr>
<tr>
<td>Avg Number of Interventions per CPS</td>
<td>304.5</td>
<td>347.1</td>
</tr>
<tr>
<td>Avg Number of Interventions per visit</td>
<td>1.87</td>
<td>1.75</td>
</tr>
</tbody>
</table>
Assessing Clinical Pharmacist Disease Management Outcomes

Interventions
- CPS Documentation of Pharmacotherapy Interventions
- Anticoagulation Intervention
- Diabetes Intervention or Goal Met
- Hypertension Intervention or Goal Met
- Heart Failure Intervention or Goal Met
- Lipid Intervention or Goal Met
- Bone Health Intervention
- Smoking Cessation Intervention or Goal Met
- Hepatitis C Intervention or Goal Met

Outcomes
- Clinical Outcomes Measured through Surrogate markers then run through Archimedes Model, adjusted to patient specific demographics from Central Data Warehouse (CDW), to project clinical outcomes

Cost Avoidance
- Apply cost models to 1-2 year cost avoidance based on disease control
<table>
<thead>
<tr>
<th>Condition</th>
<th>Visits to Goal</th>
<th>Days to Goal</th>
<th>Biomarker</th>
<th>Baseline Biomarker</th>
<th>End of tx biomarker</th>
<th>Patients Meeting Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>2-4</td>
<td>49</td>
<td>HbA1c</td>
<td>9.05</td>
<td>8.08</td>
<td>957</td>
</tr>
<tr>
<td>HTN</td>
<td>1-4</td>
<td>31</td>
<td>Systolic</td>
<td>153</td>
<td>133</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diastolic</td>
<td>93</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAP</td>
<td>113</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Lipids</td>
<td>1-2</td>
<td>34</td>
<td>LDL</td>
<td>138</td>
<td>106</td>
<td>689</td>
</tr>
</tbody>
</table>

*Patients specifically referred to the pharmacist for this disease and followed minimum of 6 month
Hypertension Kaplan Meier Curve (example output)
Cardiovascular NNTs: Preliminary 2 Yr Cost Benefit Analysis

<table>
<thead>
<tr>
<th>Disease</th>
<th>Outcome</th>
<th>NNT</th>
<th>Visit range</th>
<th>$\text{Cost/Visit (Avg cost)}$</th>
<th>Weighted Avg Acute + 2 year Cost /Event*</th>
<th>Avg Benefit/Cost (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTN</td>
<td>MI</td>
<td>43</td>
<td>1-4</td>
<td>37.75-150 ($75.5)</td>
<td>$29,294</td>
<td>9:1</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td>152</td>
<td>1-4</td>
<td>37.75-150 ($75.5)</td>
<td>$37,589</td>
<td>3.3:1</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td>63</td>
<td>1</td>
<td></td>
<td></td>
<td>Priceless</td>
</tr>
<tr>
<td>Lipid</td>
<td>MI</td>
<td>?</td>
<td>1-2</td>
<td>37.75</td>
<td>$29,294</td>
<td></td>
</tr>
<tr>
<td>All Dz (HTN, DM, Lipid)</td>
<td>MI</td>
<td>24</td>
<td>1-4</td>
<td>37.75-150 ($75.5)</td>
<td>$29,294</td>
<td>16:1</td>
</tr>
<tr>
<td>Stoke</td>
<td></td>
<td>166</td>
<td>1-4</td>
<td>37.75-150 ($75.5)</td>
<td>$37,589</td>
<td>2.9:1</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td>52</td>
<td>1-4</td>
<td>37.75-150 ($75.5)</td>
<td></td>
<td>Priceless</td>
</tr>
</tbody>
</table>
Future Implications

- The merging of these tools and technology will lead to many enhancements to the system including the possibility for the following:
 - National Benchmarking of pharmacy interventions and outcomes
 - National, Regional and Local Cost justification of new and existing pharmacists
 - Comparison of pharmacy interventions in VHA to other healthcare organizations
 - Creation of Clinical Pharmacy Staffing tools and models
 - Identification of best practices for more rapid sharing of information
 - Identification in potential gaps in care that may exist at facilities
 - Marketing the impact of clinical pharmacy care at the facility, Regional, and National levels
 - Disease state goal impact metrics for clinical pharmacy services
 - Evaluation of differences in interventions made by pharmacists with different scope of practices and/or credentials
 - Cost benefit modeling of interventions made by pharmacist and impact on disease conditions and processes
 - Evaluation of differences in pharmacist prescribing and interventions made
 - Integration of patient complexity and interventions made by pharmacists related to disease state goal achievement
Conclusions

- Tracking Clinical Pharmacists interventions and outcomes nationally is yielding robust numbers to be able to assess.
- Marrying Our software with the CDW & Archimedes Software gives up powerful predictive ability and has many implications for the future.
- Models are young and need significant refinement, especially around cost and timelines but are flexible.
- Outcomes achieved by Clinical Pharmacist should reduce Stroke and MI and is of a positive cost benefit to the system.