
The Second Derivative

When we take the derivative of a function f(x), we get a derived function f ′(x), called the deriva-
tive or first derivative. If we now take the derivative of this function f ′(x), we get another derived
function f ′′(x), which is called the second derivative of f . In differential notation this is written
d2f
dx2 . If we think of d

dx as an operator, we can think of d2

dx2 as representing the operator being applied
twice. The second derivative of f(x) tells us the rate of change of the derivative f ′(x) of f(x).

More specifically, the second derivative describes the curvature of the function f . If the function
curves upward, it is said to be concave up. If the function curves downward, then it is said to
be concave down. The behavior of the function corresponding to the second derivative can be
summarized as follows

1. The second derivative is positive (f ′′(x) > 0): When the second derivative is positive, the
function f(x) is concave up.

2. The second derivative is negative (f ′′(x) < 0): When the second derivative is negative, the
function f(x) is concave down.

3. The second derivative is zero (f ′′(x) = 0): When the second derivative is zero, it corresponds
to a possible inflection point. If the second derivative changes sign around the zero (from
positive to negative, or negative to positive), then the point is an inflection point. This
corresponds to a point where the function f(x) changes concavity. If the second derivative
does not change sign (ie. it goes from positive to zero to positive), then it is not an inflection
point (x = 0 with f(x) = x4 is an example of this).

Let us consider the following functions, and look at how their derivatives correspond to their graphs.
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Example 1 Find f ′(x) and f ′′(x) if f(x) = x3. Compare these derivatives to the graph above.



Solution By repeated applications of the power rule, we find that f ′(x) = 3x2, and f ′′(x) = 6x.
For all x, the first derivative f ′(x) > 0, so the function f(x) is always increasing. Considering the
second derivative, we see that for x < 0 we have f ′′(x) < 0, so f(x) is concave down. For x > 0
we have f ′′(x) > 0, so f(x) is concave up. At x = 0, f ′′(x) = 0, and since the second derivative
changes signs around 0, this is an inflection point, as can be seen above.

Example 2 Find f ′(x) and f ′′(x) if f(x) = x2. Compare these derivatives to the graph above.
Solution By repeated applications of the power rule, we find that f ′(x) = 2x, and f ′′(x) = 2. For
all x, the second derivative f ′′(x) > 0, so the function f(x) is always concave up. Considering the
first derivative, we see that for x < 0 we have f ′(x) < 0, so f(x) is decreasing. For x > 0 we have
f ′(x) > 0, so f(x) is increasing. At x = 0, f ′(x) = 0, which corresponds to a critical point, where
f(x) is not changing, and is in fact, the minimum of f(x).

Example 3 Find f ′(x) and f ′′(x) if f(x) = 2x. Compare these derivatives to the graph above.
Solution By repeated applications of the power rule, we find that f ′(x) = 2, and f ′′(x) = 0. For all
x, the first derivative f ′(x) > 0, so the function f(x) is always increasing. Also, for all x, the second
derivative is 0. This corresponds to a graph that does not have any concavity, such as the line above.

Example 4 Find f ′(x) and f ′′(x) if f(x) = x
x−1 . Compare these derivatives to the graph above.

Solution In this situation we cannot just use the product rule to calculate the derivatives. Instead,
we must use the quotient rule. Let u(x) = x and v(x) = x− 1. We find that u′(x) = 1 = v′(x), as
these are both linear functions. We find the derivative as

f ′(x) =
v(x)u′(x)− u(x)v′(x)

v(x)2
=

x− 1− x

(x− 1)2
=

−1
(x− 1)2

In order to calculate the second derivative, we once again need to use the quotient rule. Let
u(x) = −1 and v(x) = (x − 1)2 = x2 − 2x + 1. We find that u′(x) = 0 and v′(x) = 2x − 2. Using
the quotient rule we find

f ′′(x) =
v(x)u′(x)− u(x)v′(x)

v(x)2
=

(x− 1)2 · 0− (−1)(2x− 2)
((x− 1)2)2

=
2(x− 1)
(x− 1)4

=
2

(x− 1)3

In summary, f ′(x) = −1
(x−1)2

and f ′′(x) = 2
(x−1)3

. Now that we’ve completed the arduous task
of calculating the above derivatives, we can continue to compare them to the graph above. The
derivative is negative for all x 6= 1, and is not defined for x = 1. This indicates that for all x 6= 1
the function f(x) is decreasing. However, when we look at the graph of f , we see that values of
f for x > 1 are greater than values of f for x < 1. This strange behavior occurs because the
derivative is not defined for x = 1, where the function value essentially increases by an infinite
amount. The behavior of f ′′(x) is not so complicated, and it shows us that for x < 1 the function
is concave down, as f ′′(x) < 0. For x > 1, f ′′(x) > 0, so the function is concave up. At x = 0 the
function and its derivatives are not defined, so it makes little sense to talk about the influence of the
second derivative. Nevertheless, this point is something of an inflection point (although not tech-
nically), as the concavity of the function changes here. This example illustrates that functions and
their derivatives may have very unexpected behavior at points where their denominator’s go to zero.

In the previous examples we found the derivatives and compared their behavior to the graphs of
the function that we already knew. Based on this insight, we should be able to sketch a function
based on knowledge of its derivatives. The general procedure is as follows



1. Find f ′(x). The points where f ′(x) = 0 or is not defined are critical points. These are
points where it is possible for the sign of f ′(x) to change. If the sign changes from positive
to negative, then the point is called a local maximum. If the sign changes from negative to
positive, the point is called a local minimum. By looking at the sign of the derivative between
these points, we can map out the regions where the function is increasing and decreasing.

2. Find f ′′(x). The points where f ′′(x) = 0 are possible inflections points. By looking at the sign
of the second derivative around these points, we can map out the regions where the function
is concave up and down, as well as determine which of these points are inflection points.

3. Check f(x) for divisions by 0. These points correspond to vertical asymptotes. As the function
approaches one of these vertical asymptotes, it will either increase or decrease without bound
(approach ±∞).

4. Having examined the derivatives to find the minima, maxima, and inflection points, plot
the function at these points. Now add any vertical asymptotes to the graph (if they exist).
Finally, use the information about the regions between these points to sketch the function.

Example 5 Sketch f(x) = 2x3 − 7x2 + 5
Solution The first step is to find the first and second derivatives. In this case, we simply apply the
product rule to find that f ′(x) = 6x2 − 14x and f ′′(x) = 12x − 14. The first derivative is defined
for all x, so in order to find the critical points let us solve for f ′(x) = 0

0 = 6x2 − 14x = x(6x− 14)

Thus we have critical points when x = 0 and x = 14
6 = 7

3 = 2.3. These points divide f ′(x)
into 3 intervals; within each we need to check the sign of the derivative (one point per interval
is sufficient, as the derivative only changes sign at a critical point). By looking at f ′(x), we can
see that for very large or small values of x, the positive quadratic term will dominate the neg-
ative linear term, making the first derivative positive, so the function is increasing in the first
and last interval. Now we can use a sample point of x = 1, which lies between the two critical
points, to find that f ′(1) = 6−18 = −8 < 0. Thus, in the middle interval the function is decreasing.

In order to search for possible inflection points, we set the second derivative equal to 0, and solve
for x. We find that 0 = 12x − 14, so x = 14

12 = 7
6 = 1.16. Now we must compare the sign of the

second derivative for x > 1.16 and x < 1.16 to see if it an inflection point or not. We find that for
x < 1.16 we have f ′′(x) < 0, so the function is concave down. For x > 1.16 we have f ′′(x) > 0, so
the function is concave up. Thus, it is truly an inflection point, and we know the concavity of the
function changes from down to up at this point.

The final step is to plot the function at the above points of interest: (0, f(0)), (1.16, f(1.16)), and
(2.3, f(2.3)), which correspond to (0, 5), (1.16,−1.35), and (2.3,−7.7). Once we have plotted these
key points, we simply need to connect the dots, and be cognizant of the concavity and whether or
not the function is increasing or decreasing. The final graph is pictured below.
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Our final application of the second derivative is less mathematical, and more physical. If we have a
function of position, say y(t), the first derivative corresponds to velocity, and the second derivative
corresponds to acceleration. Thus, we can rewrite Newton’s force equation as

F = ma = m
d2y

dt2

If we know the force and the mass of the object, then the above is a differential equation which
we can solve in order to find the acceleration, velocity, and finally position. Recall that a falling
object has position described by

y(t) = 9.8t2

velocity described by

v(t) = y′(t) = 19.6t

and finally acceleration described by

a(t) = y′′(t) = 19.6

where the above quantities are measured in meters and seconds (velocity is meters per second,
where acceleration is meters per second squared).


